RESUMEN
BACKGROUND: Capacitation, a prerequisite for oocyte fertilization, is a complex process involving series of structural and functional changes in sperms such as membrane modifications, modulation of enzyme activities, and protein phosphorylation. In order to penetrate and fertilize an oocyte, mammalian sperms must undergo capacitation. Nevertheless, the process of sperm capacitation remains poorly understood and requires further elucidation. In the current study, via high throughput sequencing, we identified and explored the differentially expressed microRNAs (miRNAs) and mRNAs involved in boar sperm capacitation. RESULTS: We identified a total of 5342 mRNAs and 204 miRNAs that were differentially expressed in fresh and capacitated boar sperms. From these, 12 miRNAs (8 known and 4 newly identified miRNAs) and their differentially expressed target mRNAs were found to be involved in sperm capacitation-related PI3K-Akt, MAPK, cAMP-PKA and Ca2+signaling pathways. CONCLUSIONS: Our study is first to provide the complete miRNA and transcriptome profiles of boar sperm. Our findings provide important insights for the understanding of the RNA profile in boar sperm and future elucidation of the underlying molecular mechanism relevant to mammalian sperm capacitation.
Asunto(s)
Perfilación de la Expresión Génica , MicroARNs/genética , Capacitación Espermática/genética , Espermatozoides/metabolismo , Animales , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , ARN Mensajero/genética , Espermatozoides/fisiología , PorcinosRESUMEN
Sperm cryopreservation and artificial insemination are important methods for giant panda breeding and preservation of extant genetic diversity. Lower conception rates limit the use of artificial insemination with frozen-thawed giant panda sperm, due to the lack of understanding of the cryodamaging or cryoinjuring mechanisms in cryopreservation. Long non-coding RNAs (lncRNAs) are involved in regulating spermatogenesis. However, their roles during cryopreservation remain largely unexplored. Therefore, this study aimed to identify differentially expressed lncRNAs and mRNAs associated with cryodamage or freeze tolerance in frozen-thawed sperm through high throughput sequencing. A total of 61.05 Gb clean reads and 22,774 lncRNA transcripts were obtained. From the sequencing results, 1477 significantly up-regulated and 1,396 significantly down-regulated lncRNA transcripts from fresh and frozen-thawed sperm of giant panda were identified. GO and KEGG showed that the significantly dysregulated lncRNAs and mRNAs were mainly involved in regulating responses to cold stress and apoptosis, such as the integral component of membrane, calcium transport, and various signaling pathways including PI3K-Akt, p53 and cAMP. Our work is the first systematic profiling of lncRNA and mRNA in fresh and frozen-thawed giant panda sperm, and provides valuableinsights into the potential mechanism of cryodamage in sperm.