Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36902389

RESUMEN

A novel drug delivery system designed for intraocular injection, gelatin methacryloyl (GelMA), has attracted much attention due to its sustained-release character and low cytotoxicity. We aimed to explore the sustained drug effect of GelMA hydrogels coupled with triamcinolone acetonide (TA) after injection into the vitreous cavity. The GelMA hydrogel formulations were characterized using scanning electron microscopy, swelling measurements, biodegradation, and release studies. The biological safety effect of GelMA on human retinal pigment epithelial cells and retinal conditions was verified by in vitro and in vivo experiments. The hydrogel exhibited a low swelling ratio, resistance to enzymatic degradation, and excellent biocompatibility. The swelling properties and in vitro biodegradation characteristics were related to the gel concentration. Rapid gel formation was observed after injection, and the in vitro release study confirmed that TA-hydrogels have slower and more prolonged release kinetics than TA suspensions. In vivo fundus imaging, optical coherence tomography measurements of retinal and choroid thickness, and immunohistochemistry did not reveal any apparent abnormalities of retinal or anterior chamber angle, and ERG indicated that the hydrogel had no impact on retinal function. The GelMA hydrogel implantable intraocular device exhibited an extended duration, in situ polymerization, and support cell viability, making it an attractive, safe, and well-controlled platform for treating the posterior segment diseases of the eye.


Asunto(s)
Hidrogeles , Triamcinolona Acetonida , Humanos , Hidrogeles/química , Gelatina/química , Metacrilatos , Inyecciones Intraoculares , Ingeniería de Tejidos
2.
Exp Eye Res ; 223: 109196, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35872179

RESUMEN

Heparanase (HPSE) and vascular endothelial growth factor (VEGF) are believed to play a vital role in hypoxia-induced retinal neovascularization (RNV). HPSE is a target gene of miR-429. Our study aimed to investigate the effect of the miR-429-HPSE-VEGF pathway on hypoxia-induced RNV. The gene and protein expression of miR-429, HPSE and VEGF in human retinal endothelial cells and retinas was determined by real-time PCR and Western blot assays. The effects of miR-429 on human retinal endothelial cells and retinal neovascularization under hypoxia condition were verified by in vitro and in vivo experiments. First, we studied the effect of the miR-429-HPSE-VEGF pathway in HRECs under hypoxic conditions. HREC functions such as migration and tube formation were enhanced under hypoxic conditions. Overexpression of miR-429 in HRECs reversed these changes. Then, we investigated the effect of miR-429 on hypoxia-induced RNV in vivo. When miR-429 agomirs were injected into the vitreous cavity of mice with oxygen-induced retinopathy to overexpress miR-429, the mRNA and protein expression of VEGF was significantly reduced. In addition, indicators of retinal neovascularization, such as the retinal avascular area, and morphology of vessels, were reduced significantly in the miR-429 overexpression group. In this study, our data showed that miR-429 plays an important role by inhibiting the HPSE-VEGF pathway in hypoxia-induced retinopathy.


Asunto(s)
MicroARNs , Enfermedades de la Retina , Neovascularización Retiniana , Animales , Células Endoteliales/metabolismo , Glucuronidasa , Humanos , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Oxígeno/metabolismo , ARN Mensajero/metabolismo , Enfermedades de la Retina/metabolismo , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Front Plant Sci ; 14: 1242364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771496

RESUMEN

Introduction: Considerable evidence indicates that some trees are more vulnerable than others during bamboo (Phyllostachys edulis) expansion, which can affect plant community structure and alter the environment, but there has been insufficient research on the growth status of surviving individuals in colonized forests. Methods: In this study, we compared the annual growth increment, growth rate, and onset, cessation, and duration of radial growth of Alniphyllum fortunei, Machilus pauhoi, and Castanopsis eyrei in a bamboo-expended broadleaf forest (BEBF) and a bamboo-absent broadleaf forest (BABF) using high-resolution point dendrometers. Results: We found that the annual radial growth of A. fortunei, M. pauhoi, and C. eyrei was 22.5%, 172.2%, and 59.3% greater in BEBF than in BABF, respectively. The growth rates of M. pauhoi and C. eyrei in BEBF were significantly higher than in BABF by13.9 µm/d and 19.6 µm/d, whereas A. fortunei decreased significantly by 7.9 µm/d from BABF to BEBF. The onset and cessation of broad-leaf tree growth was later, and the growth duration was longer in BEBF compared to BABF. For example, A. fortunei and M. pauhoi in BEBF had more than one month longer growth duration than in BABF. Additionally, the nighttime growth rates of some surviving broad-leaf trees in BEBF was significantly higher than that in BABF. Discussion: These results suggest that the surviving trees have plasticity and can adapt to atmospheric changes and competitive relationships after expansion of bamboo in one of two ways: by increasing their growth rates or by modifying onset and cessation of growth to extend the growth duration of trees or avoid the period of intense competition with bamboo, thereby growing better. Our research reveals for the first time how the growth of surviving broad-leaf trees adjusts to bamboo expansion. These results provide insights into how biological expansions impact primary production and have implications for forest management in the Anthropocene.

4.
J Anal Methods Chem ; 2019: 8192439, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30719374

RESUMEN

To improve essential oil quality, especially to reserve the thermal instability of compounds, supercritical CO2 extraction (SFE) was applied to recover essential oil from Cymbopogon citronella leaves. A response surface methodology was applied to optimize the extraction process. The highest essential oil yield was predicted at extraction time 120 min, extraction pressure 25 MPa, extraction temperature 35°C, and CO2 flow 18 L/h for the SFE processing. Under these experimental conditions, the mean essential oil yield is 4.40%. In addition, the chemical compositions of SFE were compared with those obtained by hydrodistillation extraction (HD). There were 41 compounds obtained of SFE, while 35 compounds of HD. Alcohols and aldehydes were the main compositions in the essential oils. Furthermore, the antioxidant activities and antimicrobial of essential oils obtained by HD and the evaluated condition of SFE were compared. Results showed that the antioxidant activities of SFE oil are better than those of HD. Minimum inhibitory concentrations (MICs) were determined by the microdilution method. Essential oil obtained from SFE and HD exhibited a significant antimicrobial activity against all tested microorganisms. It is confirmed that the SFE method can be an alternative processing method to extract essential oils from Cymbopogon citronella leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA