Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
RNA ; 28(12): 1568-1581, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36192131

RESUMEN

Transfer RNAs acquire a large plethora of chemical modifications. Among those, modifications of the anticodon loop play important roles in translational fidelity and tRNA stability. Four human wobble U-containing tRNAs obtain 5-methoxycarbonylmethyluridine (mcm5U34) or 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34), which play a role in decoding. This mark involves a cascade of enzymatic activities. The last step is mediated by alkylation repair homolog 8 (ALKBH8). In this study, we performed a transcriptome-wide analysis of the repertoire of ALKBH8 RNA targets. Using a combination of HITS-CLIP and RIP-seq analyses, we uncover ALKBH8-bound RNAs. We show that ALKBH8 targets fully processed and CCA modified tRNAs. Our analyses uncovered the previously known set of wobble U-containing tRNAs. In addition, both our approaches revealed ALKBH8 binding to several other types of noncoding RNAs, in particular C/D box snoRNAs.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , ARN de Transferencia , Humanos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón , ARN no Traducido/genética , Homólogo 8 de AlkB ARNt Metiltransferasa/genética
2.
PLoS Pathog ; 18(3): e1010375, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294501

RESUMEN

The protozoan parasite Leishmania donovani causes fatal human visceral leishmaniasis in absence of treatment. Genome instability has been recognized as a driver in Leishmania fitness gain in response to environmental change or chemotherapy. How genome instability generates beneficial phenotypes despite potential deleterious gene dosage effects is unknown. Here we address this important open question applying experimental evolution and integrative systems approaches on parasites adapting to in vitro culture. Phenotypic analyses of parasites from early and late stages of culture adaptation revealed an important fitness tradeoff, with selection for accelerated growth in promastigote culture (fitness gain) impairing infectivity (fitness costs). Comparative genomics, transcriptomics and proteomics analyses revealed a complex regulatory network associated with parasite fitness gain, with genome instability causing highly reproducible, gene dosage-independent and -dependent changes. Reduction of flagellar transcripts and increase in coding and non-coding RNAs implicated in ribosomal biogenesis and protein translation were not correlated to dosage changes of the corresponding genes, revealing a gene dosage-independent, post-transcriptional mechanism of regulation. In contrast, abundance of gene products implicated in post-transcriptional regulation itself correlated to corresponding gene dosage changes. Thus, RNA abundance during parasite adaptation is controled by direct and indirect gene dosage changes. We correlated differential expression of small nucleolar RNAs (snoRNAs) with changes in rRNA modification, providing first evidence that Leishmania fitness gain in culture may be controlled by post-transcriptional and epitranscriptomic regulation. Our findings propose a novel model for Leishmania fitness gain in culture, where differential regulation of mRNA stability and the generation of modified ribosomes may potentially filter deleterious from beneficial gene dosage effects and provide proteomic robustness to genetically heterogenous, adapting parasite populations. This model challenges the current, genome-centric approach to Leishmania epidemiology and identifies the Leishmania transcriptome and non-coding small RNome as potential novel sources for the discovery of biomarkers that may be associated with parasite phenotypic adaptation in clinical settings.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Regulación de la Expresión Génica , Inestabilidad Genómica , Humanos , Leishmania donovani/genética , Leishmaniasis Visceral/parasitología , Proteómica
3.
RNA Biol ; 18(sup1): 19-30, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34424827

RESUMEN

Eukaryotic mRNAs are modified by several chemical marks which have significant impacts on mRNA biology, gene expression, and cellular metabolism as well as on the survival and development of the whole organism. The most abundant and well-studied mRNA base modifications are m6A and ADAR RNA editing. Recent studies have also identified additional mRNA marks such as m6Am, m5C, m1A and Ψ and studied their roles. Each type of modification is deposited by a specific writer, many types of modification are recognized and interpreted by several different readers and some types of modifications can be removed by eraser enzymes. Several works have addressed the functional relationships between some of the modifications. In this review we provide an overview on the current status of research on the different types of mRNA modifications and about the crosstalk between different marks and its functional consequences.


Asunto(s)
Epigénesis Genética , Epigenómica/métodos , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Transcriptoma , Animales , Humanos , ARN Mensajero/genética
4.
iScience ; 23(12): 101780, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33294788

RESUMEN

The parasite Trypanosoma brucei is the causative agent of sleeping sickness and cycles between insect and mammalian hosts. The parasite appears to lack conventional transcriptional regulation of protein coding genes, and mRNAs are processed from polycistronic transcripts by the concerted action of trans-splicing and polyadenylation. Regulation of mRNA function is mediated mainly by RNA binding proteins affecting mRNA stability and translation. In this study, we describe the identification of 62 non-coding (nc) RNAs that are developmentally regulated and/or respond to stress. We characterized two novel anti-sense RNA regulators (TBsRNA-33 and 37) that originate from the rRNA loci, associate with ribosomes and polyribosomes, and interact in vivo with distinct mRNA species to regulate translation. Thus, this study suggests for the first-time anti-sense RNA regulators as an additional layer for controlling gene expression in these parasites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA