Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(22): E5203-E5212, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760094

RESUMEN

The unfolded protein response (UPR) is an ancient signaling pathway designed to protect cells from the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). Because misregulation of the UPR is potentially lethal, a stringent surveillance signaling system must be in place to modulate the UPR. The major signaling arms of the plant UPR have been discovered and rely on the transcriptional activity of the transcription factors bZIP60 and bZIP28 and on the kinase and ribonuclease activity of IRE1, which splices mRNA to activate bZIP60. Both bZIP28 and bZIP60 modulate UPR gene expression to overcome ER stress. In this study, we demonstrate at a genetic level that the transcriptional role of bZIP28 and bZIP60 in ER-stress responses is antagonized by nonexpressor of PR1 genes 1 (NPR1), a critical redox-regulated master regulator of salicylic acid (SA)-dependent responses to pathogens, independently of its role in SA defense. We also establish that the function of NPR1 in the UPR is concomitant with ER stress-induced reduction of the cytosol and translocation of NPR1 to the nucleus where it interacts with bZIP28 and bZIP60. Our results support a cellular role for NPR1 as well as a model for plant UPR regulation whereby SA-independent ER stress-induced redox activation of NPR1 suppresses the transcriptional role of bZIP28 and bZIP60 in the UPR.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Retículo Endoplásmico/genética , Ácido Salicílico/metabolismo
2.
Plant Cell ; 29(10): 2465-2477, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28982964

RESUMEN

Arabidopsis thaliana calmodulin binding transcription activator (CAMTA) factors repress the expression of genes involved in salicylic acid (SA) biosynthesis and SA-mediated immunity in healthy plants grown at warm temperature (22°C). This repression is overcome in plants exposed to low temperature (4°C) for more than a week and in plants infected by biotrophic and hemibiotrophic pathogens. Here, we present evidence that CAMTA3-mediated repression of SA pathway genes in nonstressed plants involves the action of an N-terminal repression module (NRM) that acts independently of calmodulin (CaM) binding to the IQ and CaM binding (CaMB) domains, a finding that is contrary to current thinking that CAMTA3 repression activity requires binding of CaM to the CaMB domain. Induction of SA pathway genes in response to low temperature did not occur in plants expressing only the CAMTA3-NRM region of the protein. Mutational analysis provided evidence that the repression activity of the NRM was suppressed by action of the IQ and CaMB domains responding to signals generated in response to low temperature. Plants expressing the CAMTA3-NRM region were also impaired in defense against the bacterial hemibiotrophic pathogen Pseudomonas syringae pv tomato DC3000. Our results indicate that the regulation of CAMTA3 repression activity by low temperature and pathogen infection involves related mechanisms, but with distinct differences.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/genética , Calmodulina/genética , Calmodulina/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas/fisiología , Pseudomonas syringae/patogenicidad , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Cell ; 28(3): 746-69, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26941089

RESUMEN

The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was found to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of ahlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Endosomas/metabolismo , Proteínas de Microfilamentos/metabolismo , Red trans-Golgi/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Endocitosis , Exocitosis , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido , Proteínas de Microfilamentos/genética , Mutación , Transporte de Proteínas
4.
Plant Physiol ; 171(2): 833-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208234

RESUMEN

Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Pectinas/metabolismo , Fotosíntesis , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Esterificación , Células del Mesófilo/metabolismo , Metilación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología
5.
J Cell Sci ; 127(Pt 5): 947-53, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24424025

RESUMEN

Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.


Asunto(s)
Arabidopsis/citología , Retículo Endoplásmico/fisiología , Proteínas de Arabidopsis/fisiología , Proliferación Celular , Corriente Citoplasmática , Proteínas de Unión al GTP/fisiología , Membranas Intracelulares/metabolismo , Fluidez de la Membrana
6.
Plant Physiol ; 167(4): 1296-306, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673778

RESUMEN

Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactosa/metabolismo , Galactosiltransferasas/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Pared Celular/química , Galactosiltransferasas/genética , Glucanos/química , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Mutación , Pectinas/metabolismo , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Polisacáridos/metabolismo , Xilanos/química
7.
Plant Cell ; 25(5): 1756-73, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23673980

RESUMEN

N-myristoylation is a crucial irreversible eukaryotic lipid modification allowing a key subset of proteins to be targeted at the periphery of specific membrane compartments. Eukaryotes have conserved N-myristoylation enzymes, involving one or two N-myristoyltransferases (NMT1 and NMT2), among which NMT1 is the major enzyme. In the postembryonic developmental stages, defects in NMT1 lead to aberrant cell polarity, flower differentiation, fruit maturation, and innate immunity; however, no specific NMT1 target responsible for such deficiencies has hitherto been identified. Using a confocal microscopy forward genetics screen for the identification of Arabidopsis thaliana secretory mutants, we isolated STINGY, a recessive mutant with defective Golgi traffic and integrity. We mapped STINGY to a substitution at position 160 of Arabidopsis NMT1 (NMT1A160T). In vitro kinetic studies with purified NMT1A160T enzyme revealed a significant reduction in its activity due to a remarkable decrease in affinity for both myristoyl-CoA and peptide substrates. We show here that this recessive mutation is responsible for the alteration of Golgi traffic and integrity by predominantly affecting the Golgi membrane/cytosol partitioning of ADP-ribosylation factor proteins. Our results provide important functional insight into N-myristoylation in plants by ascribing postembryonic functions of Arabidopsis NMT1 that involve regulation of the functional and morphological integrity of the plant endomembranes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Metiltransferasas/metabolismo , Acilcoenzima A/química , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Immunoblotting , Metiltransferasas/química , Metiltransferasas/genética , Microscopía Confocal , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Unión Proteica , Estructura Terciaria de Proteína , Proteómica/métodos , Homología de Secuencia de Aminoácido
8.
Plant Cell ; 25(11): 4658-75, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24280388

RESUMEN

Plant cells face unique challenges to efficiently export cargo from the endoplasmic reticulum (ER) to mobile Golgi stacks. Coat protein complex II (COPII) components, which include two heterodimers of Secretory23/24 (Sec23/24) and Sec13/31, facilitate selective cargo export from the ER; however, little is known about the mechanisms that regulate their recruitment to the ER membrane, especially in plants. Here, we report a protein transport mutant of Arabidopsis thaliana, named maigo5 (mag5), which abnormally accumulates precursor forms of storage proteins in seeds. mag5-1 has a deletion in the putative ortholog of the Saccharomyces cerevisiae and Homo sapiens Sec16, which encodes a critical component of ER exit sites (ERESs). mag mutants developed abnormal structures (MAG bodies) within the ER and exhibited compromised ER export. A functional MAG5/SEC16A-green fluorescent protein fusion localized at Golgi-associated cup-shaped ERESs and cycled on and off these sites at a slower rate than the COPII coat. MAG5/SEC16A interacted with SEC13 and SEC31; however, in the absence of MAG5/SEC16A, recruitment of the COPII coat to ERESs was accelerated. Our results identify a key component of ER export in plants by demonstrating that MAG5/SEC16A is required for protein export at ERESs that are associated with mobile Golgi stacks, where it regulates COPII coat turnover.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutación , Plantas Modificadas Genéticamente , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semillas/genética , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Plant J ; 69(6): 957-66, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22082223

RESUMEN

The mechanisms underlying the organization and dynamics of plant endomembranes are largely unknown. Arabidopsis RHD3, a distant member of the dynamin superfamily, has recently been implicated in plant ER morphology and Golgi movement through analyses of dominant-negative mutants of the putative GTPase domain in a heterologous system. Whether RHD3 is indispensable for ER architecture and what role regions other than the putative GTPase domain play in RHD3 function are unanswered questions. Here we characterized an EMS mutant, gom8, with disrupted Golgi movement and positioning and compromised ER shape and dynamics. gom8 mapped to a missense mutation in the RHD3 hairpin loop domain, causing accumulation of the mutant protein into large structures, a markedly different distribution compared with wild-type RHD3 over the ER network. Despite the GOM8 distribution, tubules fused in the peripheral ER of the gom8 mutant. These data imply that integrity of the hairpin region is important for the subcellular distribution of RHD3, and that reduced availability of RHD3 over the ER can cause ER morphology defects, but does not prevent peripheral fusion between tubules. This was confirmed by evidence that gom8 was phenocopied in an RHD3 null background. Furthermore, we established that the region encompassing the RHD3 hairpin domain and the C-terminal cytosolic domain is necessary for RHD3 function. We conclude that RHD3 is important in ER morphology, but is dispensable for peripheral ER tubulation in an endogenous context, and that its activity relies on the C-terminal region in addition to the GTPase domain.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Retículo Endoplásmico/metabolismo , Proteínas de Unión al GTP/metabolismo , Aparato de Golgi/metabolismo , Sustitución de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cotiledón/genética , Cotiledón/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/genética , Activación Enzimática , Pruebas de Enzimas , Proteínas de Unión al GTP/genética , Aparato de Golgi/genética , Mutación Missense , Fenotipo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estructura Terciaria de Proteína
10.
J Hazard Mater ; 423(Pt B): 127238, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34844356

RESUMEN

In this study, Cucurbita pepo L., one of the most cultivated, consumed and economically important crop worldwide, was used as model plant to test the toxic effects of the four most abundant microplastics identified in contaminated soils, i.e. polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and polyethyleneterephthalate (PET). Cucurbita plants were grown in pots with increasing concentrations of the microplastics, then plant biometry, photosynthetic parameters and ionome of treated vs. untreated samples were compared to evaluate the toxicity of each plastic. All the pollutants impaired root and, especially, shoot growth. Specific and concentration-dependant effects of the different microplastics were found, including reduction in leaf size, chlorophyll content and photosynthetic efficiency, as well as changes in the micro- and macro-elemental profile. Among all the microplastics, PVC was identified as the most toxic and PE as the less toxic material. PVC decreased the dimensions of the leaf lamina, the values of the photosynthetic performance index and the plant iron concentration to a higher extent in respect to the other treatments. Microplastic toxicity exerted on the growth of C. pepo raises concerns about possible yield and economic loss, as well as for risks of a possible transfer into the food chain.


Asunto(s)
Cucurbita , Microplásticos , Clorofila , Fotosíntesis , Plásticos/toxicidad
11.
Plant J ; 63(6): 901-13, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20626647

RESUMEN

A central question in cell biology is how the identity of organelles is established and maintained. Here, we report on GOLD36, an EMS mutant identified through a screen for partial displacement of the Golgi marker, ST-GFP, to other organelles. GOLD36 showed partial distribution of ST-GFP into a modified endoplasmic reticulum (ER) network, which formed bulges and large skein-like structures entangling Golgi stacks. GOLD36 showed defects in ER protein export as evidenced by our observations that, besides the partial retention of Golgi markers in the ER, the trafficking of a soluble bulk-flow marker to the cell surface was also compromised. Using a combination of classical mapping and next-generation DNA sequencing approaches, we linked the mutant phenotype to a missense mutation of a proline residue in position 80 to a leucine residue in a small endomembrane protein encoded by the gold36 locus (At1g54030). Subcellular localization analyses indicated that GOLD36 is a vacuolar protein and that its mutated form is retained in the ER. Interestingly also, a gold36 knock-out mutant mirrored the GOLD36 subcellular phenotype. These data indicate that GOLD36 is a protein destined to post-ER compartments and suggest that its export from the ER is a requirement to ensure steady-state maintenance of the organelle's organization and functional activity in relation to other secretory compartments. We speculate that GOLD36 may be a factor that is necessary for ER integrity because of its ability to limit deleterious effects of other secretory proteins on the ER.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Mutación Missense/genética , Vías Secretoras/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/ultraestructura , Microscopía Confocal , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa , Transporte de Proteínas , Vías Secretoras/genética
12.
Plant J ; 64(5): 790-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21105926

RESUMEN

ARF-GTPases are important proteins that control membrane trafficking events. Their activity is largely influenced by the interplay between guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which facilitate the activation or inactivation of ARF-GTPases, respectively. There are 15 predicted proteins that contain an ARF-GAP domain within the Arabidopsis thaliana genome, and these are classified as ARF-GAP domain (AGD) proteins. The function and subcellular distribution of AGDs, including the ability to activate ARF-GTPases in vivo, that remain largely uncharacterized to date. Here we show that AGD5 is localised to the trans-Golgi network (TGN), where it co-localises with ARF1, a crucial GTPase that is involved in membrane trafficking and which was previously shown to be distributed on Golgi and post-Golgi structures of unknown nature. Taking advantage of the in vivo AGD5-ARF1 interaction at the TGN, we show that mutation of an arginine residue that is critical for ARF-GAP activity of AGD5 leads to longer residence of ARF1 on the membranes, as expected if GTP hydrolysis on ARF1 was impaired due to a defective GAP. Our results establish the nature of the post-Golgi compartments in which ARF1 localises, as well as identifying the role of AGD5 in vivo as a TGN-localised GAP. Furthermore, in vitro experiments established the promiscuous interaction between AGD5 and the plasma membrane-localised ADP ribosylation factor B (ARFB), confirming that ARF-GAP specificity for ARF-GTPases within the cell environment may be spatially regulated.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Activadoras de GTPasa/metabolismo , Red trans-Golgi/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/genética , Datos de Secuencia Molecular , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
13.
J Exp Bot ; 62(14): 4917-26, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21705385

RESUMEN

Eukaryotic cells use COPII-coated carriers for endoplasmic reticulum (ER)-to-Golgi protein transport. Selective cargo capture into ER-derived carriers is largely driven by the SEC24 component of the COPII coat. The Arabidopsis genome encodes three AtSEC24 genes with overlapping expression profiles but it is yet to be established whether the AtSEC24 proteins have overlapping roles in plant growth and development. Taking advantage of Arabidopsis thaliana as a model plant system for studying gene function in vivo, through reciprocal crosses, pollen characterization, and complementation tests, evidence is provided for a role for AtSEC24A in the male gametophyte. It is established that an AtSEC24A loss-of-function mutation is tolerated in the female gametophyte but that it causes defects in pollen leading to failure of male transmission of the AtSEC24A mutation. These data provide a characterization of plant SEC24 family in planta showing incompletely overlapping functions of the AtSEC24 isoforms. The results also attribute a novel role to SEC24 proteins in a multicellular model system, specifically in male fertility.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Células Germinativas de las Plantas/metabolismo , Polen/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Células Germinativas de las Plantas/citología , Mutación , Infertilidad Vegetal , Polen/citología , Polen/genética , Especificidad de la Especie , Proteínas de Transporte Vesicular/genética
14.
Membranes (Basel) ; 11(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924184

RESUMEN

Plants rely on both actin and microtubule cytoskeletons to fine-tune sorting and spatial targeting of membranes during cell growth and stress adaptation. Considerable advances have been made in recent years in the comprehension of the relationship between the trans-Golgi network/early endosome (TGN/EE) and cytoskeletons, but studies have mainly focused on the transport to and from the plasma membrane. We address here the relationship of the cytoskeleton with different endoplasmic reticulum (ER) export mechanisms toward vacuoles. These emergent features of the plant endomembrane traffic are explored with an in vivo approach, providing clues on the traffic regulation at different levels beyond known proteins' functions and interactions. We show how traffic of vacuolar markers, characterized by different vacuolar sorting determinants, diverges at the export from the ER, clearly involving different components of the cytoskeleton.

15.
Front Plant Sci ; 11: 580726, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362810

RESUMEN

Phosphoglucoisomerase (PGI) isomerizes fructose 6-phosphate (F6P) and glucose 6-phosphate (G6P) in starch and sucrose biosynthesis. Both plastidic and cytosolic isoforms are found in plant leaves. Using recombinant enzymes and isolated chloroplasts, we have characterized the plastidic and cytosolic isoforms of PGI. We have found that the Arabidopsis plastidic PGI K m for G6P is three-fold greater compared to that for F6P and that erythrose 4-phosphate is a key regulator of PGI activity. Additionally, the K m of spinach plastidic PGI can be dynamically regulated in the dark compared to the light and increases by 200% in the dark. We also found that targeting Arabidopsis cytosolic PGI into plastids of Nicotiana tabacum disrupts starch accumulation and degradation. Our results, in combination with the observation that plastidic PGI is not in equilibrium, indicates that PGI is an important regulatory enzyme that restricts flow and acts as a one-way valve preventing backflow of G6P into the Calvin-Benson cycle. We propose the PGI may be manipulated to improve flow of carbon to desired targets of biotechnology.

16.
Methods Mol Biol ; 1789: 55-63, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29916071

RESUMEN

In plant cells, vacuoles are extremely important for growth and development, and influence important cellular functions as photosynthesis, respiration, and transpiration. Plant cells contain lytic and storage vacuoles, whose size can be different depending on cell type and tissue developmental stage. One of the main roles of vacuoles is to regulate the cell turgor in response to different stimuli. Thus, studying the morphology, dynamics, and physiology of vacuole is fundamentally important to advance knowledge in plant cell biology at large. The availability of fluorescent probes allows marking vacuoles in multiple ways. These may be fast, when using commercially available chemical dyes, or relatively slow, in the case of specific genetically encoded markers based on proteins directed either to the membrane of the vacuole (tonoplast) or to the vacuole lumen. Any of these approaches provides useful information about the morphology and physiology of the vacuole.


Asunto(s)
Proteínas de Arabidopsis/análisis , Arabidopsis/citología , Colorantes Fluorescentes/análisis , Microscopía Confocal/métodos , Coloración y Etiquetado/métodos , Vacuolas/ultraestructura , Arabidopsis/química , Arabidopsis/ultraestructura , Proteínas Luminiscentes/análisis , Rojo Neutro/análisis , Compuestos de Piridinio/análisis , Compuestos de Amonio Cuaternario/análisis , Vacuolas/química
17.
Methods Mol Biol ; 1789: 117-130, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29916075

RESUMEN

The availability of more specific dyes for a subset of endomembrane compartments, combined with the development of genetically encoded probes and advanced microscopy technologies, makes live cell imaging an approach that goes beyond the microscopically observation of cell structure. Here we describe the latest improved techniques to investigate protein-protein interaction, protein topology, and protein dynamics.Furthermore, we depict new technical approaches to identify mutants for chloroplast morphology and distribution through the tracking of chlorophyll fluorescence, as well as mutants for chloroplast movement.


Asunto(s)
Arabidopsis/ultraestructura , Microscopía Confocal/métodos , Nicotiana/ultraestructura , Imagen Óptica/métodos , Mapeo de Interacción de Proteínas/métodos , Arabidopsis/metabolismo , Supervivencia Celular , Clorofila/análisis , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Microscopía Fluorescente/métodos , Nicotiana/metabolismo
18.
Cell Rep ; 23(8): 2299-2307, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29791842

RESUMEN

Through yet-undefined mechanisms, the plant endoplasmic reticulum (ER) has a critical role in endocytosis. The plant ER establishes a close association with endosomes and contacts the plasma membrane (PM) at ER-PM contact sites (EPCSs) demarcated by the ER membrane-associated VAMP-associated-proteins (VAP). Here, we investigated two plant VAPs, VAP27-1 and VAP27-3, and found an interaction with clathrin and a requirement for the homeostasis of clathrin dynamics at endocytic membranes and endocytosis. We also demonstrated direct interaction of VAP27-proteins with phosphatidylinositol-phosphate lipids (PIPs) that populate endocytic membranes. These results support that, through interaction with PIPs, VAP27-proteins bridge the ER with endocytic membranes and maintain endocytic traffic, likely through their interaction with clathrin.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Endocitosis , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas R-SNARE/metabolismo , Arabidopsis/ultraestructura , Membrana Celular/metabolismo , Clatrina/metabolismo , Homeostasis , Lípidos/química , Unión Proteica
19.
Nat Commun ; 9(1): 5313, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30552321

RESUMEN

Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Red trans-Golgi/metabolismo , Arabidopsis/genética , Proteínas Portadoras , Membrana Celular/metabolismo , Endocitosis/fisiología , Genes de Plantas , Homeostasis , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo , Red trans-Golgi/genética
20.
Front Plant Sci ; 9: 1949, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687352

RESUMEN

SYP51 and 52 are the two members of the SYP5 Qc-SNARE gene family in Arabidopsis thaliana. These two proteins, besides their high level of sequence identity (85%), have shown to have differential functional specificity and possess a different interactome. Here we describe a unique and specific interaction of SYP51 with an ER aquaporin, AtNIP1;1 (also known as NLM1) indicated to be able to transport arsenite [As(III)] and previously localized on PM. In the present work we investigate in detail such localization in vivo and characterize the interaction with SYP51. We suggest that this interaction may reveal a new mechanism regulating tonoplast invagination and recycling. We propose this interaction to be part of a regulatory mechanism associated with direct membrane transport from ER to tonoplast and Golgi mediated vesicle trafficking. We also demonstrate that NIP1;1 is important for plant tolerance to arsenite but does not alter its uptake or translocation. To explain such phenomenon the hypothesis that SYP51/NIP1;1 interaction modifies ER and vacuole ability to accumulate arsenite is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA