Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 50(7): 3649-57, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26967929

RESUMEN

The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.


Asunto(s)
Sedimentos Geológicos/microbiología , Lagos , Consorcios Microbianos/genética , Ciclo del Nitrógeno , Desnitrificación , Agua Subterránea , Hidrología/métodos , Lagos/química , Massachusetts , Nitrificación
2.
Toxics ; 12(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38787125

RESUMEN

The use of wetlands as a treatment approach for nitrogen in runoff is a common practice in agroecosystems. However, nitrate is not the sole constituent present in agricultural runoff and other biologically active contaminants have the potential to affect nitrate removal efficiency. In this study, the impacts of the combined effects of four common veterinary antibiotics (chlortetracycline, sulfamethazine, lincomycin, monensin) on nitrate-N treatment efficiency in saturated sediments and wetlands were evaluated in a coupled microcosm/mesocosm scale experiment. Veterinary antibiotics were hypothesized to significantly impact nitrogen speciation (e.g., nitrate and ammonium) and nitrogen uptake and transformation processes (e.g., plant uptake and denitrification) within the wetland ecosystems. To test this hypothesis, the coupled study had three objectives: 1. assess veterinary antibiotic impact on nitrogen cycle processes in wetland sediments using microcosm incubations, 2. measure nitrate-N reduction in water of floating treatment wetland systems over time following the introduction of veterinary antibiotic residues, and 3. identify the fate of veterinary antibiotics in floating treatment wetlands using mesocosms. Microcosms containing added mixtures of the veterinary antibiotics had little to no effect at lower concentrations but stimulated denitrification potential rates at higher concentrations. Based on observed changes in the nitrogen loss in the microcosm experiments, floating treatment wetland mesocosms were enriched with 1000 µg L-1 of the antibiotic mixture. Rates of nitrate-N loss observed in mesocosms with the veterinary antibiotic enrichment were consistent with the microcosm experiments in that denitrification was not inhibited, even at the high dosage. In the mesocosm experiments, average nitrate-N removal rates were not found to be impacted by the veterinary antibiotics. Further, veterinary antibiotics were primarily found in the roots of the floating treatment wetland biomass, accumulating approximately 190 mg m-2 of the antibiotic mixture. These findings provide new insight into the impact that veterinary antibiotic mixtures may have on nutrient management strategies for large-scale agricultural operations and the potential for veterinary antibiotic removal in these wetlands.

3.
Sci Total Environ ; 803: 150078, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525758

RESUMEN

Influenza A viruses (IAVs) deposited by wild birds into the environment may lead to sporadic mortality events and economically costly outbreaks among domestic birds. There is a paucity of information, however, regarding the persistence of infectious IAVs within the environment following deposition. In this investigation, we assessed the persistence of 12 IAVs that were present in cloacal and/or oropharyngeal swabs of naturally infected ducks. Infectivity of these IAVs was monitored over approximately one year with each virus tested in five water types: (1) distilled water held in the lab at 4 °C and (2-5) filtered surface water from each of four Alaska sites and maintained in the field at ambient temperature. By evaluating infectivity of IAVs in ovo following sample retrieval at four successive time points, we observed declines in IAV infectivity through time. Many viruses persisted for extended periods, as evidenced by ≥25% of IAVs remaining infectious in replicate samples for each treatment type through three sampling time points (144-155 days post-sample collection) and two viruses remaining viable in a single replicate sample each when tested upon collection at a fourth time point (361-377 days post-sample collection). The estimated probability of persistence of infectious IAVs in all five water types was estimated to be between 0.25 and 0.75 during days 50-200 post-sample collection as inferred through Kaplan-Meier survival analysis. Our results provide evidence that IAVs may remain infectious for extended periods, up to or even exceeding one year, when maintained in surface waters under ambient temperatures. Therefore, wetlands may represent an important medium in which infectious IAVs may reside outside of a biotic reservoir.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Alaska/epidemiología , Animales , Patos , Gripe Aviar/epidemiología , Humedales
4.
Environ Sci Technol ; 45(7): 3096-101, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21384910

RESUMEN

The effects of "trace" (environmentally relevant) concentrations of the antimicrobial agent sulfamethoxazole (SMX) on the growth, nitrate reduction activity, and bacterial composition of an enrichment culture prepared with groundwater from a pristine zone of a sandy drinking-water aquifer on Cape Cod, MA, were assessed by laboratory incubations. When the enrichments were grown under heterotrophic denitrifying conditions and exposed to SMX, noticeable differences from the control (no SMX) were observed. Exposure to SMX in concentrations as low as 0.005 µM delayed the initiation of cell growth by up to 1 day and decreased nitrate reduction potential (total amount of nitrate reduced after 19 days) by 47% (p=0.02). Exposure to 1 µM SMX, a concentration below those prescribed for clinical applications but higher than concentrations typically detected in aqueous environments, resulted in additional inhibitions: reduced growth rates (p=5×10(-6)), lower nitrate reduction rate potentials (p=0.01), and decreased overall representation of 16S rRNA gene sequences belonging to the genus Pseudomonas. The reduced abundance of Pseudomonas sequences in the libraries was replaced by sequences representing the genus Variovorax. Results of these growth and nitrate reduction experiments collectively suggest that subtherapeutic concentrations of SMX altered the composition of the enriched nitrate-reducing microcosms and inhibited nitrate reduction capabilities.


Asunto(s)
Antiinfecciosos/toxicidad , Bacterias/efectos de los fármacos , Agua Dulce/microbiología , Sulfametoxazol/toxicidad , Contaminantes Químicos del Agua/toxicidad , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Desnitrificación/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Datos de Secuencia Molecular , Nitratos/metabolismo , Fijación del Nitrógeno/efectos de los fármacos , Microbiología del Agua , Abastecimiento de Agua/análisis
5.
Sci Total Environ ; 764: 142906, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33115600

RESUMEN

High latitude, boreal watersheds are nitrogen (N)-limited ecosystems that export large amounts of organic carbon (C). Key controls on C cycling in these environments are the biogeochemical processes affecting the N cycle. A study was conducted in Nome Creek, an upland tributary of the Yukon River, and two headwater tributaries to Nome Creek, to examine the relation between seasonal and transport-associated changes in C and N pools and N-cycling processes using laboratory bioassays of water and sediment samples and in-stream tracer tests. Dissolved organic nitrogen (DON) exceeded dissolved inorganic nitrogen (DIN) in Nome Creek except late in the summer season, with little variation in organic C:N ratios with time or transport distance. DIN was dominant in the headwater tributaries. Rates of organic N mineralization and denitrification in laboratory incubations were positively correlated with sediment organic C content, while nitrification rates differed greatly between two headwater tributaries with similar drainages. Additions of DIN or urea did not stimulate microbial activity. In-stream tracer tests with nitrate and urea indicated that uptake rates were slow relative to transport rates; simulated rates of uptake in stream storage zones were higher than rates assessed in the laboratory bioassays. In general, N-cycle processes were more active and had a greater overall impact in the headwater tributaries and were minimized in Nome Creek, the larger, higher velocity, transport-dominated stream. Given expectations of permafrost thaw and increased hydrologic cycling that will flush more inorganic N from headwater streams, our results suggest higher N loads from these systems in the future.


Asunto(s)
Nitrógeno , Ríos , Alaska , Ecosistema , Nitrógeno/análisis , El Yukón
6.
Water Res ; 39(10): 2014-23, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15890383

RESUMEN

Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.


Asunto(s)
Reactores Biológicos , Hidrógeno/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Abastecimiento de Agua , Carbono/análisis , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Concentración de Iones de Hidrógeno , Compuestos Orgánicos/análisis , Compuestos Orgánicos/metabolismo , Oxidación-Reducción , Rhodocyclaceae/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/instrumentación , Purificación del Agua/métodos
7.
Environ Sci Technol ; 43(7): 2348-54, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19452885

RESUMEN

Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 microM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, oftotal dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n=13), DIN concentrations were >300 microM, with pH > 8.5, after 5 km of transport. Ammonium represented 25-30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day(-1) entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.


Asunto(s)
Carbón Mineral , Combustibles Fósiles , Compuestos Inorgánicos/química , Nitrógeno/química , Wyoming
8.
Environ Sci Technol ; 40(4): 1154-62, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16572769

RESUMEN

Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m(-2)) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m(-2)) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.


Asunto(s)
Carbono/análisis , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Abastecimiento de Agua/análisis , Massachusetts , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA