Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 33(7): 1187-202, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24748527

RESUMEN

KEY MESSAGE: We show that DCN1 binds ubiquitin and RUB/NEDD8, associates with cullin, and is functionally conserved. DCN1 activity is required for pollen development transitions and embryogenesis, and for pollen tube growth. Plant proteomes show remarkable plasticity in reaction to environmental challenges and during developmental transitions. Some of this adaptability comes from ubiquitin-mediated protein degradation regulated by cullin-RING E3 ubiquitin ligases (CRLs). CRLs are activated through modification of the cullin subunit with the ubiquitin-like protein RUB/NEDD8 by an E3 ligase called defective in cullin neddylation 1 (DCN1). Here we show that tobacco DCN1 binds ubiquitin and RUB/NEDD8 and associates with cullin. When knocked down by RNAi, tobacco pollen formation was affected and zygotic embryogenesis was blocked around the globular stage. Additionally, we found that RNAi of DCN1 inhibited the stress-triggered reprogramming of cultured microspores from their intrinsic gametophytic mode of development to an embryogenic state. This stress-induced developmental switch is a known feature in many important crops and leads ultimately to the formation of haploid embryos and plants. Compensating the RNAi effect by re-transformation with a promoter-silencing construct restored pollen development and zygotic embryogenesis, as well as the ability for stress-induced formation of embryogenic microspores. Overexpression of DCN1 accelerated pollen tube growth and increased the potential for microspore reprogramming. These results demonstrate that the biochemical function of DCN1 is conserved in plants and that its activity is involved in transitions during pollen development and embryogenesis, and for pollen tube growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Semillas/genética , Secuencia de Aminoácidos , Proteínas de Caenorhabditis elegans/genética , Proteínas Cullin/metabolismo , Datos de Secuencia Molecular , Proteína NEDD8 , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Interferencia de ARN , Homología de Secuencia de Aminoácido , Nicotiana/crecimiento & desarrollo , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
2.
Plant Biotechnol J ; 5(4): 483-94, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17470055

RESUMEN

Reversible male sterility and doubled haploid plant production are two valuable technologies in F(1)-hybrid breeding. F(1)-hybrids combine uniformity with high yield and improved agronomic traits, and provide self-acting intellectual property protection. We have developed an F(1)-hybrid seed technology based on the metabolic engineering of glutamine in developing tobacco anthers and pollen. Cytosolic glutamine synthetase (GS1) was inactivated in tobacco by introducing mutated tobacco GS genes fused to the tapetum-specific TA29 and microspore-specific NTM19 promoters. Pollen in primary transformants aborted close to the first pollen mitosis, resulting in male sterility. A non-segregating population of homozygous doubled haploid male-sterile plants was generated through microspore embryogenesis. Fertility restoration was achieved by spraying plants with glutamine, or by pollination with pollen matured in vitro in glutamine-containing medium. The combination of reversible male sterility with doubled haploid production results in an innovative environmentally friendly breeding technology. Tapetum-mediated sporophytic male sterility is of use in foliage crops, whereas microspore-specific gametophytic male sterility can be applied to any field crop. Both types of sterility preclude the release of transgenic pollen into the environment.


Asunto(s)
Citoplasma/enzimología , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Haploidia , Nicotiana/fisiología , Polen/enzimología , Homocigoto , Nicotiana/embriología , Nicotiana/enzimología , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA