Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 102: 103420, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805346

RESUMEN

Neuroserpin is a serine protease inhibitor of the nervous system required for normal synaptic plasticity and regulating cognitive, emotional and social behavior in mice. The high expression level of neuroserpin detected at late stages of nervous system formation in most regions of the brain points to a function in neurodevelopment. In order to evaluate the contribution of neuroserpin to brain development, we investigated developmental neurogenesis and neuronal differentiation in the hippocampus of neuroserpin-deficient mice. Moreover, synaptic reorganization and composition of perineuronal net were studied during maturation and stabilization of hippocampal circuits. We showed that absence of neuroserpin results in early termination of neuronal precursor proliferation and premature neuronal differentiation in the first postnatal weeks. Additionally, at the end of the critical period neuroserpin-deficient mice had changed morphology of dendritic spines towards a more mature phenotype. This was accompanied by increased protein levels and reduced proteolytic cleavage of aggrecan, a perineuronal net core protein. These data suggest a role for neuroserpin in coordinating generation and maturation of the hippocampus, which is essential for establishment of an appropriate neuronal network.


Asunto(s)
Espinas Dendríticas/metabolismo , Neurogénesis , Neuropéptidos/metabolismo , Serpinas/metabolismo , Animales , Línea Celular , Proliferación Celular , Células Cultivadas , Espinas Dendríticas/fisiología , Hipocampo/citología , Hipocampo/embriología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neuropéptidos/genética , Serpinas/genética , Neuroserpina
2.
Learn Mem ; 24(12): 650-659, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29142062

RESUMEN

The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the adult brain. The physiological expression pattern of neuroserpin, its high degree of colocalization with tPA within the CNS, together with its dysregulation in neuropsychiatric disorders, suggest a role in formation and refinement of synapses. In fact, studies in cell culture and mice point to a role for neuroserpin in dendritic branching, spine morphology, and modulation of behavior. In this study, we investigated the physiological role of neuroserpin in the regulation of synaptic density, synaptic plasticity, and behavior in neuroserpin-deficient mice. In the absence of neuroserpin, mice show a significant decrease in spine-synapse density in the CA1 region of the hippocampus, while expression of the key postsynaptic scaffold protein PSD-95 is increased in this region. Neuroserpin-deficient mice show decreased synaptic potentiation, as indicated by reduced long-term potentiation (LTP), whereas presynaptic paired-pulse facilitation (PPF) is unaffected. Consistent with altered synaptic plasticity, neuroserpin-deficient mice exhibit cognitive and sociability deficits in behavioral assays. However, although synaptic dysfunction is implicated in neuropsychiatric disorders, we do not detect alterations in expression of neuroserpin in fusiform gyrus of autism patients or in dorsolateral prefrontal cortex of schizophrenia patients. Our results identify neuroserpin as a modulator of synaptic plasticity, and point to a role for neuroserpin in learning and memory.


Asunto(s)
Regulación de la Expresión Génica/genética , Plasticidad Neuronal/genética , Neuropéptidos/deficiencia , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/deficiencia , Conducta Social , Sinapsis/genética , Adolescente , Adulto , Animales , Trastorno Autístico/genética , Trastorno Autístico/patología , Trastorno Autístico/psicología , Niño , Conducta Exploratoria/fisiología , Hipocampo/fisiología , Hipocampo/ultraestructura , Humanos , Potenciación a Largo Plazo/genética , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neuropéptidos/genética , Serpinas/genética , Sinapsis/fisiología , Sinapsis/ultraestructura , Proteína 25 Asociada a Sinaptosomas/metabolismo , Adulto Joven , Neuroserpina
3.
Front Neuroanat ; 15: 627896, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708076

RESUMEN

Neuroserpin is a serine protease inhibitor that regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin is strongly expressed during nervous system development as well as during adulthood, when it is predominantly found in regions eliciting synaptic plasticity. In the hippocampus, neuroserpin regulates developmental neurogenesis, synaptic maturation and in adult mice it modulates synaptic plasticity and controls cognitive and social behavior. High expression levels of neuroserpin in the neocortex starting from prenatal stage and persisting during adulthood suggest an important role for the serpin in the formation of this brain region and in the maintenance of cortical functions. In order to uncover neuroserpin function in the murine neocortex, in this work we performed a comprehensive investigation of its expression pattern during development and in the adulthood. Moreover, we assessed the role of neuroserpin in cortex formation by comparing cortical lamination and neuronal maturation between neuroserpin-deficient and control mice. Finally, we evaluated a possible regulatory role of neuroserpin at cortical synapses in neuroserpin-deficient mice. We observed that neuroserpin is expressed starting from the beginning of corticogenesis until adulthood throughout the neocortex in several classes of glutamatergic projection neurons and GABA-ergic interneurons. However, in the absence of neuroserpin we did not detect any alteration either in cortical layer formation, or in neuronal soma size and dendritic length. Furthermore, no significant quantitative changes were observed in the proteome of cortical synapses upon neuroserpin deficiency. We conclude that, although strongly expressed in the neocortex, absence of neuroserpin does not lead to gross developmental abnormalities, and does not perturb the composition of the cortical synaptic proteome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA