RESUMEN
Sepsis-induced cardiomyopathy (SIC) is associated with increased patient mortality. At present, there are no specific therapies for SIC. Previous studies have reported increased reactive oxygen species (ROS) and mitochondrial dysfunction during SIC. However, a unifying mechanism remains to be defined. We hypothesized that PKCδ is required for abnormal calcium handling and cardiac mitochondrial dysfunction during sepsis and that genetic deletion of PKCδ would be protective. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) surgery decreased the ejection fraction of wild-type (WT) mice but not PKCδ knockout (KO) mice. Similarly, WT cardiomyocytes exposed to lipopolysaccharide (LPS) demonstrated decreases in contractility and calcium transient amplitude that were not observed in PKCδ KO cardiomyocytes. LPS treatment decreased sarcoplasmic reticulum calcium stores in WT cardiomyocytes, which correlated with increased ryanodine receptor-2 oxidation in WT hearts but not PKCδ KO hearts after sepsis. LPS exposure increased mitochondrial ROS and decreased mitochondrial inner membrane potential in WT cardiomyocytes. This corresponded to morphologic changes consistent with mitochondrial dysfunction such as decreased overall size and cristae disorganization. Increased cellular ROS and changes in mitochondrial morphology were not observed in PKCδ KO cardiomyocytes. These data show that PKCδ is required in the pathophysiology of SIC by generating ROS and promoting mitochondrial dysfunction. Thus, PKCδ is a potential target for cardiac protection during sepsis.NEW & NOTEWORTHY Sepsis is often complicated by cardiac dysfunction, which is associated with a high mortality rate. Our work shows that the protein PKCδ is required for decreased cardiac contractility during sepsis. Mice with deletion of PKCδ are protected from cardiac dysfunction after sepsis. PKCδ causes mitochondrial dysfunction in cardiac myocytes, and reducing mitochondrial oxidative stress improves contractility in wild-type cardiomyocytes. Thus, PKCδ is a potential target for cardiac protection during sepsis.
Asunto(s)
Cardiomiopatías/genética , Mitocondrias Cardíacas/metabolismo , Proteína Quinasa C-delta/genética , Sepsis/complicaciones , Animales , Señalización del Calcio , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Células Cultivadas , Femenino , Eliminación de Gen , Lipopolisacáridos/toxicidad , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Estrés Oxidativo , Proteína Quinasa C-delta/metabolismoRESUMEN
[Figure: see text].
Asunto(s)
Fibrilación Atrial/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Metformina/administración & dosificación , Compuestos de Sulfonilurea/administración & dosificación , Taquicardia Ventricular/prevención & control , Fibrilación Ventricular/prevención & control , Administración Oral , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Fibrilación Atrial/fisiopatología , Bases de Datos Factuales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Quimioterapia Combinada , Humanos , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiología , Taquicardia Ventricular/fisiopatología , Factores de Tiempo , Resultado del Tratamiento , Fibrilación Ventricular/diagnóstico , Fibrilación Ventricular/etiología , Fibrilación Ventricular/fisiopatologíaRESUMEN
Obesity and diabetes increase the risk of arrhythmia and sudden cardiac death. However, the molecular mechanisms of arrhythmia caused by metabolic abnormalities are not well understood. We hypothesized that mitochondrial dysfunction caused by high fat diet (HFD) promotes ventricular arrhythmia. Based on our previous work showing that saturated fat causes calcium handling abnormalities in cardiomyocytes, we hypothesized that mitochondrial calcium uptake contributes to HFD-induced mitochondrial dysfunction and arrhythmic events. For experiments, we used mice with conditional cardiac-specific deletion of the mitochondrial calcium uniporter (Mcu), which is required for mitochondrial calcium uptake, and littermate controls. Mice were used for in vivo heart rhythm monitoring, perfused heart experiments, and isolated cardiomyocyte experiments. MCU KO mice are protected from HFD-induced long QT, inducible ventricular tachycardia, and abnormal ventricular repolarization. Abnormal repolarization may be due, at least in part, to a reduction in protein levels of voltage gated potassium channels. Furthermore, isolated cardiomyocytes from MCU KO mice exposed to saturated fat are protected from increased reactive oxygen species (ROS), mitochondrial dysfunction, and abnormal calcium handling. Activation of calmodulin-dependent protein kinase (CaMKII) corresponds with the increase in arrhythmias in vivo. Additional experiments showed that CaMKII inhibition protects cardiomyocytes from the mitochondrial dysfunction caused by saturated fat. Hearts from transgenic CaMKII inhibitor mice were protected from inducible ventricular tachycardia after HFD. These studies identify mitochondrial dysfunction caused by calcium overload as a key mechanism of arrhythmia during HFD. This work indicates that MCU and CaMKII could be therapeutic targets for arrhythmia caused by metabolic abnormalities.
Asunto(s)
Arritmias Cardíacas/metabolismo , Canales de Calcio/metabolismo , Dieta Alta en Grasa , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Canales de Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratones , Ratones Noqueados , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Cardiac arrhythmias are responsible for many cardiovascular disease-related deaths worldwide. While arrhythmia pathogenesis is complex, there is increasing evidence for metabolic causes. Obesity, diabetes, and chronically consuming high-fat foods significantly increase the likelihood of developing arrhythmias. Although these correlations are well established, mechanistic explanations connecting a high-fat diet (HFD) to arrhythmogenesis are incomplete, although oxidative stress appears to be critical. This review investigates the metabolic changes that occur in obesity and after HFD. Potential therapies to prevent or treat arrhythmias are discussed, including antioxidants.
RESUMEN
BACKGROUND: Obesity and diets high in saturated fat increase the risk of arrhythmias and sudden cardiac death. However, the molecular mechanisms are not well understood. We hypothesized that an increase in dietary saturated fat could lead to abnormalities of calcium homeostasis and heart rhythm by a NOX2 (NADPH oxidase 2)-dependent mechanism. METHODS: We investigated this hypothesis by feeding mice high-fat diets. In vivo heart rhythm telemetry, optical mapping, and isolated cardiac myocyte imaging were used to quantify arrhythmias, repolarization, calcium transients, and intracellular calcium sparks. RESULTS: We found that saturated fat activates NOX (NADPH oxidase), whereas polyunsaturated fat does not. The high saturated fat diet increased repolarization heterogeneity and ventricular tachycardia inducibility in perfused hearts. Pharmacological inhibition or genetic deletion of NOX2 prevented arrhythmogenic abnormalities in vivo during high statured fat diet and resulted in less inducible ventricular tachycardia. High saturated fat diet activates CaMK (Ca2+/calmodulin-dependent protein kinase) in the heart, which contributes to abnormal calcium handling, promoting arrhythmia. CONCLUSIONS: We conclude that NOX2 deletion or pharmacological inhibition prevents the arrhythmogenic effects of a high saturated fat diet, in part mediated by activation of CaMK. This work reveals a molecular mechanism linking cardiac metabolism to arrhythmia and suggests that NOX2 inhibitors could be a novel therapy for heart rhythm abnormalities caused by cardiac lipid overload.
Asunto(s)
Arritmias Cardíacas/etiología , Calcio/metabolismo , Dieta Alta en Grasa/efectos adversos , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 2/metabolismo , Estrés Oxidativo , Animales , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Ratones , Miocitos Cardíacos/patología , Oxidación-ReducciónRESUMEN
The epidemics of obesity and diabetes mellitus are associated with an increased incidence of both atrial fibrillation (AF), the most common sustained arrhythmia in adults, and sudden cardiac death (SCD). Obesity and DM are known to have adverse effects on cardiac structure and function. The pathologic mechanisms are thought to involve cardiac tissue remodeling, metabolic dysregulation, inflammation, and oxidative stress. Clinical data suggest that left atrial size, epicardial fat pad thickness, and other modifiable risk factors such as hypertension, glycemic control, and obstructive sleep apnea may mediate the association with AF. Data from human atrial tissue biopsies demonstrate alterations in atrial lipid content and evidence of mitochondrial dysfunction. With respect to ventricular arrhythmias, abnormalities such as long QT syndrome, frequent premature ventricular contractions, and left ventricular hypertrophy with diastolic dysfunction are commonly observed in obese and diabetic humans. The increased risk of SCD in this population may also be related to excessive cardiac lipid deposition and insulin resistance. While nutritional interventions have had limited success, perhaps due to poor long-term compliance, weight loss and improved cardiorespiratory fitness may reduce the frequency and severity of AF.