Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(11): 1875-1887.e8, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35523182

RESUMEN

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
2.
Nat Immunol ; 23(5): 768-780, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314848

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination elicit CD4+ T cell responses to the spike protein, including circulating follicular helper T (cTFH) cells that correlate with neutralizing antibodies. Using a novel HLA-DRB1*15:01/S751 tetramer to track spike-specific CD4+ T cells, we show that primary infection or vaccination induces robust S751-specific CXCR5- and cTFH cell memory responses. Secondary exposure induced recall of CD4+ T cells with a transitory CXCR3+ phenotype, and drove expansion of cTFH cells transiently expressing ICOS, CD38 and PD-1. In both contexts, cells exhibited a restricted T cell antigen receptor repertoire, including a highly public clonotype and considerable clonotypic overlap between CXCR5- and cTFH populations. Following a third vaccine dose, the rapid re-expansion of spike-specific CD4+ T cells contrasted with the comparatively delayed increase in antibody titers. Overall, we demonstrate that stable pools of cTFH and memory CD4+ T cells established by infection and/or vaccination are efficiently recalled upon antigen reexposure and may contribute to long-term protection against SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos/metabolismo , Humanos , Receptores CXCR5/metabolismo , Linfocitos T Colaboradores-Inductores
3.
Cell ; 174(1): 117-130.e14, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29909981

RESUMEN

Heterogeneity is a hallmark feature of the adaptive immune system in vertebrates. Following infection, naive T cells differentiate into various subsets of effector and memory T cells, which help to eliminate pathogens and maintain long-term immunity. The current model suggests there is a single lineage of naive T cells that give rise to different populations of effector and memory T cells depending on the type and amounts of stimulation they encounter during infection. Here, we have discovered that multiple sub-populations of cells exist in the naive CD8+ T cell pool that are distinguished by their developmental origin, unique transcriptional profiles, distinct chromatin landscapes, and different kinetics and phenotypes after microbial challenge. These data demonstrate that the naive CD8+ T cell pool is not as homogeneous as previously thought and offers a new framework for explaining the remarkable heterogeneity in the effector and memory T cell subsets that arise after infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Genes del Desarrollo , Listeria monocytogenes/patogenicidad , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Cromatina/metabolismo , Citocinas/farmacología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/metabolismo , Memoria Inmunológica , Interferón gamma/metabolismo , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Listeria monocytogenes/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Componente Principal , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timo/trasplante , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
4.
Immunity ; 56(4): 879-892.e4, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958334

RESUMEN

Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Infección Irruptiva , ARN Viral , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunación
5.
Immunity ; 55(7): 1316-1326.e4, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35690062

RESUMEN

Vaccination against SARS-CoV-2 protects from infection and improves clinical outcomes in breakthrough infections, likely reflecting residual vaccine-elicited immunity and recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and cellular immunity after vaccination of seropositive individuals and after Delta or Omicron breakthrough infection in vaccinated individuals. Early longitudinal sampling revealed the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titers. While vaccination of seropositive individuals resulted in robust recall of humoral and T cell immunity, recall of vaccine-elicited responses was delayed and variable in magnitude during breakthrough infections and depended on the infecting variant of concern. While the delayed kinetics of immune recall provides a potential mechanism for the lack of early control of viral replication, the recall of antibodies coincided with viral clearance and likely underpins the protective effects of vaccination against severe COVID-19.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , SARS-CoV-2 , Vacunación
6.
Proc Natl Acad Sci U S A ; 119(49): e2212548119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442114

RESUMEN

Microbial exposure during development can elicit long-lasting effects on the health of an individual. However, how microbial exposure in early life leads to permanent changes in the immune system is unknown. Here, we show that the microbial environment alters the set point for immune susceptibility by altering the developmental architecture of the CD8+ T cell compartment. In particular, early microbial exposure results in the preferential expansion of highly responsive fetal-derived CD8+ T cells that persist into adulthood and provide the host with enhanced immune protection against intracellular pathogens. Interestingly, microbial education of fetal-derived CD8+ T cells occurs during thymic development rather than in the periphery and involves the acquisition of a more effector-like epigenetic program. Collectively, our results provide a conceptual framework for understanding how microbial colonization in early life leads to lifelong changes in the immune system.


Asunto(s)
Linfocitos T CD8-positivos , Feto , Inmunidad , Diferenciación Celular , Escolaridad , Epigenómica , Feto/inmunología , Feto/microbiología
7.
J Hepatol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604387

RESUMEN

BACKGROUND & AIMS: In individuals highly exposed to HCV, reinfection is common, suggesting that natural development of sterilising immunity is difficult. In those that are reinfected, some will develop a persistent infection, while a small proportion repeatedly clear the virus, suggesting natural protection is possible. The aim of this study was to characterise immune responses associated with rapid natural clearance of HCV reinfection. METHODS: Broad neutralising antibodies (nAbs) and Envelope 2 (E2)-specific memory B cell (MBC) responses were examined longitudinally in 15 individuals with varied reinfection outcomes. RESULTS: Broad nAb responses were associated with MBC recall, but not with clearance of reinfection. Strong evidence of antigen imprinting was found, and the B-cell receptor repertoire showed a high level of clonality with ongoing somatic hypermutation of many clones over subsequent reinfection events. Single-cell transcriptomic analyses showed that cleared reinfections featured an activated transcriptomic profile in HCV-specific B cells that rapidly expanded upon reinfection. CONCLUSIONS: MBC quality, but not necessarily breadth of nAb responses, is important for protection against antigenically diverse variants, which is encouraging for HCV vaccine development. IMPACT AND IMPLICATIONS: HCV continues to have a major health burden globally. Limitations in the health infrastructure for diagnosis and treatment, as well as high rates of reinfection, indicate that a vaccine that can protect against chronic HCV infection will greatly complement current efforts to eliminate HCV-related disease. With alternative approaches to testing vaccines, such as controlled human inoculation trials under consideration, we desperately need to identify the correlates of immune protection. In this study, in a small but rare cohort of high-risk injecting drug users who were reinfected multiple times, breadth of neutralisation was not associated with ultimate clearance of the reinfection event. Alternatively, characteristics of the HCV-specific B-cell response associated with B-cell proliferation were. This study indicates that humoral responses are important for protection and suggests that for genetically very diverse viruses, such as HCV, it may be beneficial to look beyond just antibodies as correlates of protection.

8.
J Infect Dis ; 225(10): 1721-1730, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34655216

RESUMEN

BACKGROUND: Circadian transcription factors that regulate cell-autonomous circadian clocks can also increase human immunodeficiency virus (HIV) transcription in vitro. We aimed to determine whether circadian variation in HIV transcription exists in people with HIV (PWH) on antiretroviral therapy (ART). METHODS: We performed a prospective observational study of male PWH on ART, sampling blood every 4 hours for 24 hours. Using quantitative polymerase chain reaction, we quantified expression of circadian-associated genes, HIV deoxyribonucleic acid (DNA), and cell-associated unspliced (CA-US) ribonucleic acid (RNA) in peripheral blood CD4+ T cells. Plasma sex hormones were quantified alongside plasma and salivary cortisol. The primary outcome was to identify temporal variations in CA-US HIV RNA using a linear mixed-effect regression framework and maximum likelihood estimation. RESULTS: Salivary and plasma cortisol, and circadian genes including Clock, Bmal1, and Per3, varied with a circadian rhythm. Cell-associated unspliced HIV RNA and the ratio of CA-US HIV RNA/DNA in CD4+ T cells also demonstrated circadian variations, with no variation in HIV DNA. Circulating estradiol was highly predictive of CA-US HIV RNA variation in vivo. CONCLUSIONS: Cell-associated unspliced HIV RNA in PWH on ART varies temporally with a circadian rhythm. These findings have implications for the design of clinical trials and biomarkers to assess HIV cure interventions.


Asunto(s)
Infecciones por VIH , Hidrocortisona , Linfocitos T CD4-Positivos , VIH/genética , Infecciones por VIH/tratamiento farmacológico , Humanos , Hidrocortisona/uso terapéutico , Masculino , ARN Viral/genética
9.
Clin Infect Dis ; 75(1): e878-e879, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35100611

RESUMEN

The vaccine candidate CVnCoV (CUREVAC) showed surprisingly low efficacy in a recent phase 3 trial compared with other messenger RNA (mRNA) vaccines. Here we show that the low efficacy follows from the dose used and the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and is predicted by the neutralizing antibody response induced by the vaccine.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 116(10): 3974-3981, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765525

RESUMEN

Accumulating evidence indicates that the immune system does not develop in a linear fashion, but rather as distinct developmental layers formed from sequential waves of hematopoietic stem cells, each giving rise to unique populations of immune cells at different stages of development. Although recent studies have indicated that conventional CD8+ T cells produced in early life persist into adulthood and exhibit distinct roles during infection, the developmental architecture of the peripheral T cell compartment remains undefined. In this study, we used a mouse model to permanently label CD8+ T cells produced during distinct windows of development and traced their history to generate fate maps of CD8+ T cells produced during different stages of life. We then used mathematical modeling to understand the age structure of the CD8+ T cell compartment across the lifespan. Interestingly, we found that survival rate of CD8+ T cells depends on both the age and developmental origin of the cells. Recently produced cells show an initial rapid decay rate, which slows with age of the animal at which the cells were produced. For cells produced at any age, the rate of decay also slows with the age of the cell. We derive a function to describe this and predict the "age distribution" of the CD8+ T cell pool for animals of any given age. These data provide a quantitative framework for understanding the ontogeny of the CD8+ T cell compartment and help to contextualize age-related changes in the CD8+ T cell response to infection.


Asunto(s)
Envejecimiento/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Inmunológicos , Envejecimiento/genética , Animales , Linfocitos T CD8-positivos/citología , Ratones , Ratones Transgénicos
11.
PLoS Pathog ; 13(5): e1006359, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28472156

RESUMEN

HIV and SIV infection dynamics are commonly investigated by measuring plasma viral loads. However, this total viral load value represents the sum of many individual infection events, which are difficult to independently track using conventional sequencing approaches. To overcome this challenge, we generated a genetically tagged virus stock (SIVmac239M) with a 34-base genetic barcode inserted between the vpx and vpr accessory genes of the infectious molecular clone SIVmac239. Next-generation sequencing of the virus stock identified at least 9,336 individual barcodes, or clonotypes, with an average genetic distance of 7 bases between any two barcodes. In vitro infection of rhesus CD4+ T cells and in vivo infection of rhesus macaques revealed levels of viral replication of SIVmac239M comparable to parental SIVmac239. After intravenous inoculation of 2.2x105 infectious units of SIVmac239M, an average of 1,247 barcodes were identified during acute infection in 26 infected rhesus macaques. Of the barcodes identified in the stock, at least 85.6% actively replicated in at least one animal, and on average each barcode was found in 5 monkeys. Four infected animals were treated with combination antiretroviral therapy (cART) for 82 days starting on day 6 post-infection (study 1). Plasma viremia was reduced from >106 to <15 vRNA copies/mL by the time treatment was interrupted. Virus rapidly rebounded following treatment interruption and between 87 and 136 distinct clonotypes were detected in plasma at peak rebound viremia. This study confirmed that SIVmac239M viremia could be successfully curtailed with cART, and that upon cART discontinuation, rebounding viral variants could be identified and quantified. An additional 6 animals infected with SIVmac239M were treated with cART beginning on day 4 post-infection for 305, 374, or 482 days (study 2). Upon treatment interruption, between 4 and 8 distinct viral clonotypes were detected in each animal at peak rebound viremia. The relative proportions of the rebounding viral clonotypes, spanning a range of 5 logs, were largely preserved over time for each animal. The viral growth rate during recrudescence and the relative abundance of each rebounding clonotype were used to estimate the average frequency of reactivation per animal. Using these parameters, reactivation frequencies were calculated and ranged from 0.33-0.70 events per day, likely representing reactivation from long-lived latently infected cells. The use of SIVmac239M therefore provides a powerful tool to investigate SIV latency and the frequency of viral reactivation after treatment interruption.


Asunto(s)
Variación Genética , Genoma Viral/genética , Modelos Teóricos , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Replicación Viral , Animales , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/virología , Marcadores Genéticos/genética , Macaca mulatta , Masculino , Análisis de Secuencia de ADN , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/genética , Carga Viral , Viremia
12.
Malar J ; 18(1): 19, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670032

RESUMEN

BACKGROUND: Studies of the association between the level of anti-malarial antibody and protection from malaria infection can yield conflicting results if they fail to take into account differences in the malaria transmission rate. This can occur because high malaria exposure may drive high antibody responses, leading to an apparent positive association between immune response and infection rate. The neonatal period provides a unique window to study the protective effects of antibodies, because waning maternally-derived antibodies lead to different levels of protection with time. METHODS: This study uses data from two well-defined infant cohorts in Western Kenya with different burdens of malaria transmission. Survival models were used to assess how the magnitude of maternally derived malaria-specific IgG antibody (to 24 malaria antigens measured using Luminex beads) affected the time-to-first Plasmodium falciparum infection (detected by PCR). In addition, mathematical models were used to assess how the frequency of malaria infection varied between the cohorts with different exposure levels. RESULTS: Despite differences in underlying malaria incidence in the two regions, there was no difference in time-to-first malaria infection between the cohorts. However, there was a significant period of protection observed in children with high initial MSP1 (42 kDa fragment)-specific antibody levels, but this protection was not observed in children with low antibody levels. Children from the high transmission cohort had both longer initial periods of protection from malaria (attributable to higher initial antibody levels), but more rapid time-to-first-infection once malaria specific maternal antibodies declined below protective levels (attributable to higher exposure rates). CONCLUSION: This study demonstrates the complex interaction between passive (maternally-derived) immunity and the degree of malaria exposure in infants. Children from regions of high malaria transmission had higher levels of maternally-derived antibodies in early life, which led to a significant protection for several months. However, once this immunity waned, the underlying higher frequency of infection was revealed. A better understanding of the interaction between malaria exposure, immunity, and transmission risk will assist in identifying protective immune responses in P. falciparum infection.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Inmunidad Materno-Adquirida , Inmunoglobulina G/inmunología , Malaria Falciparum/inmunología , Antígenos de Protozoos/inmunología , Preescolar , Estudios de Cohortes , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Kenia/epidemiología , Estudios Longitudinales , Malaria Falciparum/epidemiología , Masculino , Plasmodium falciparum/inmunología
13.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28539449

RESUMEN

There is growing interest in utilizing antibody-dependent cellular cytotoxicity (ADCC) to eliminate infected cells following reactivation from HIV-1 latency. A potential barrier is that HIV-1-specific ADCC antibodies decline in patients on long-term antiretroviral therapy (ART) and may not be sufficient to eliminate reactivated latently infected cells. It is not known whether reactivation from latency with latency-reversing agents (LRAs) could provide sufficient antigenic stimulus to boost HIV-1-specific ADCC. We found that treatment with the LRA panobinostat or a short analytical treatment interruption (ATI), 21 to 59 days, was not sufficient to stimulate an increase in ADCC-competent antibodies, despite viral rebound in all subjects who underwent the short ATI. In contrast, a longer ATI, 2 to 12 months, among subjects enrolled in the Strategies for Management of Antiretroviral Therapy (SMART) trial robustly boosted HIV-1 gp120-specific Fc receptor-binding antibodies and ADCC against HIV-1-infected cells in vitro These results show that there is a lag between viral recrudescence and the boosting of ADCC antibodies, which has implications for strategies toward eliminating latently infected cells.IMPORTANCE The "shock and kill" HIV-1 cure strategy aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. Several latency reversing agents (LRAs) have been examined in vivo, but LRAs alone have not been able to achieve HIV-1 remission and prevent viral rebound following analytical treatment interruption (ATI). In this study, we examined whether LRA treatment or ATI can provide sufficient antigenic stimulus to boost HIV-1-specific functional antibodies that can eliminate HIV-1-infected cells. Our study has implications for the antigenic stimulus required for antilatency strategies and/or therapeutic vaccines to boost functional antibodies and assist in eliminating the latent reservoir.


Asunto(s)
Inmunidad Adaptativa , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Adulto , Antirretrovirales/administración & dosificación , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Ácidos Hidroxámicos/administración & dosificación , Indoles/administración & dosificación , Masculino , Persona de Mediana Edad , Panobinostat , Factores de Tiempo
14.
J Infect Dis ; 213(6): 985-91, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26531246

RESUMEN

Endemic Burkitt lymphoma is associated with Epstein-Barr virus (EBV) and Plasmodium falciparum coinfection, although how P. falciparum exposure affects the dynamics of EBV infection is unclear. We have used a modeling approach to study EBV infection kinetics in a longitudinal cohort of children living in regions of high and low malaria transmission in Kenya. Residence in an area of high malaria transmission was associated with a higher rate of EBV expansion during primary EBV infection in infants and during subsequent episodes of EBV DNA detection, as well as with longer episodes of EBV DNA detection and shorter intervals between subsequent episodes of EBV DNA detection. In addition, we found that concurrent P. falciparum parasitemia also increases the likelihood of the first and subsequent peaks of EBV in peripheral blood. This suggests that P. falciparum infection is associated with increased EBV growth and contributes to endemic Burkitt lymphoma pathogenesis.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Malaria Falciparum/complicaciones , Plasmodium falciparum , Replicación Viral/fisiología , Área Bajo la Curva , Infecciones por Virus de Epstein-Barr/epidemiología , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Malaria Falciparum/epidemiología , Modelos de Riesgos Proporcionales , Carga Viral
15.
J Infect Dis ; 214(9): 1390-1398, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27571902

RESUMEN

The combination of Epstein-Barr virus (EBV) infection and high malaria exposure are risk factors for endemic Burkitt lymphoma, and evidence suggests that infants in regions of high malaria exposure have earlier EBV infection and increased EBV reactivation. In this study we analyzed the longitudinal antibody response to EBV in Kenyan infants with different levels of malaria exposure. We found that high malaria exposure was associated with a faster decline of maternally derived immunoglobulin G antibody to both the EBV viral capsid antigen and EBV nuclear antigen, followed by a more rapid rise in antibody response to EBV antigens in children from the high-malaria-transmission region. We also observed the long-term persistence of anti-viral capsid antigen immunoglobulin M responses in children from the high-malaria region. More rapid decay of maternal antibodies was a major predictor of EBV infection outcome, because decay predicted time to EBV DNA detection, independent of high or low malaria exposure.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Infecciones por Virus de Epstein-Barr/etiología , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/inmunología , Malaria/complicaciones , Malaria/inmunología , Antígenos Virales/inmunología , Linfoma de Burkitt/etiología , Linfoma de Burkitt/inmunología , Proteínas de la Cápside/inmunología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Lactante , Recién Nacido , Kenia , Carga Viral/inmunología
16.
Immunol Cell Biol ; 94(9): 838-848, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27142943

RESUMEN

Neonates are particularly susceptible to a number of infections, and the neonatal CD8+ T-cell response demonstrates differences in both the phenotype and magnitude of responses to infection compared with adults. However, the underlying basis for these differences is unclear. We have used a mathematical modeling approach to analyze the dynamics of neonatal and adult CD8+ T-cell responses following in vitro stimulation and in vivo infection, which allows us to dissect key cell-intrinsic differences in expansion, differentiation and memory formation. We found that neonatal cells started dividing 8 h earlier and proliferated at a faster rate (0.077 vs 0.105 per day) than adult cells in vitro. In addition, neonatal cells also differentiated more rapidly, as measured by the loss in CD62L and Ly6C expression. We extended our mathematical modeling to analysis of neonatal and adult CD8+ T cells responding in vivo and demonstrated that neonatal cells divide more slowly than adult cells after day 4 post infection. However, neonatal cells differentiate more rapidly, upregulating more KLRG1 per division than adult cells (20% vs 5%). The dynamics of memory formation were also found to be different, with neonatal effector cells showing increased death (1.0 vs 2.45 per day). Comparison of the division of human cord blood and adult naive cells stimulated in vitro showed more division in cord blood-derived cells, consistent with the observations in mice. This work highlights differences of the cell-intrinsic division and differentiation program in neonatal CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Modelos Inmunológicos , Adolescente , Traslado Adoptivo , Adulto , Animales , Diferenciación Celular , División Celular , Proliferación Celular , Sangre Fetal/citología , Humanos , Memoria Inmunológica , Recién Nacido , Cinética , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Adulto Joven
17.
Sci Immunol ; 9(92): eadj9285, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335268

RESUMEN

Human infection challenge permits in-depth, early, and pre-symptomatic characterization of the immune response, enabling the identification of factors that are important for viral clearance. Here, we performed intranasal inoculation of 34 young adult, seronegative volunteers with a pre-Alpha severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain. Of these participants, 18 (53%) became infected and showed an interferon-dominated mediator response with divergent kinetics between nasal and systemic sites. Peripheral CD4+ and CD8+ T cell activation and proliferation were early and robust but showed distinct kinetic and phenotypic profiles; antigen-specific T cells were largely CD38+Ki67+ and displayed central and effector memory phenotypes. Both mucosal and systemic antibodies became detectable around day 10, but nasal antibodies plateaued after day 14 while circulating antibodies continued to rise. Intensively granular measurements in nasal mucosa and blood allowed modeling of immune responses to primary SARS-CoV-2 infection that revealed CD8+ T cell responses and early mucosal IgA responses strongly associated with viral control, indicating that these mechanisms should be targeted for transmission-reducing intervention.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunación , Linfocitos T CD8-positivos , Mucosa Nasal
18.
Nat Commun ; 14(1): 1633, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964146

RESUMEN

Vaccine protection from symptomatic SARS-CoV-2 infection has been shown to be strongly correlated with neutralising antibody titres; however, this has not yet been demonstrated for severe COVID-19. To explore whether this relationship also holds for severe COVID-19, we performed a systematic search for studies reporting on protection against different SARS-CoV-2 clinical endpoints and extracted data from 15 studies. Since matched neutralising antibody titres were not available, we used the vaccine regimen, time since vaccination and variant of concern to predict corresponding neutralising antibody titres. We then compared the observed vaccine effectiveness reported in these studies to the protection predicted by a previously published model of the relationship between neutralising antibody titre and vaccine effectiveness against severe COVID-19. We find that predicted neutralising antibody titres are strongly correlated with observed vaccine effectiveness against symptomatic (Spearman [Formula: see text] = 0.95, p < 0.001) and severe (Spearman [Formula: see text] = 0.72, p < 0.001 for both) COVID-19 and that the loss of neutralising antibodies over time and to new variants are strongly predictive of observed vaccine protection against severe COVID-19.


Asunto(s)
COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Eficacia de las Vacunas
19.
Sci Adv ; 9(29): eadg5301, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478181

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection of vaccinated individuals is increasingly common with the circulation of highly immune evasive and transmissible Omicron variants. Here, we report the dynamics and durability of recalled spike-specific humoral immunity following Omicron BA.1 or BA.2 breakthrough infection, with longitudinal sampling up to 8 months after infection. Both BA.1 and BA.2 infections robustly boosted neutralization activity against the infecting strain while expanding breadth against BA.4, although neutralization activity was substantially reduced for the more recent XBB and BQ.1.1 strains. Cross-reactive memory B cells against both ancestral and Omicron spike were predominantly expanded by infection, with limited recruitment of de novo Omicron-specific B cells or antibodies. Modeling of neutralization titers predicts that protection from symptomatic reinfection against antigenically similar strains will be durable but is undermined by new emerging strains with further neutralization escape.


Asunto(s)
Anticuerpos Neutralizantes , Infección Irruptiva , COVID-19 , Humanos , SARS-CoV-2
20.
JCI Insight ; 8(18)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737263

RESUMEN

Understanding mucosal antibody responses from SARS-CoV-2 infection and/or vaccination is crucial to develop strategies for longer term immunity, especially against emerging viral variants. We profiled serial paired mucosal and plasma antibodies from COVID-19 vaccinated only vaccinees (vaccinated, uninfected), COVID-19-recovered vaccinees (recovered, vaccinated), and individuals with breakthrough Delta or Omicron BA.2 infections (vaccinated, infected). Saliva from COVID-19-recovered vaccinees displayed improved antibody-neutralizing activity, Fcγ receptor (FcγR) engagement, and IgA levels compared with COVID-19-uninfected vaccinees. Furthermore, repeated mRNA vaccination boosted SARS-CoV-2-specific IgG2 and IgG4 responses in both mucosa biofluids (saliva and tears) and plasma; however, these rises only negatively correlated with FcγR engagement in plasma. IgG and FcγR engagement, but not IgA, responses to breakthrough COVID-19 variants were dampened and narrowed by increased preexisting vaccine-induced immunity against the ancestral strain. Salivary antibodies delayed initiation following breakthrough COVID-19 infection, especially Omicron BA.2, but rose rapidly thereafter. Importantly, salivary antibody FcγR engagements were enhanced following breakthrough infections. Our data highlight how preexisting immunity shapes mucosal SARS-CoV-2-specific antibody responses and has implications for long-term protection from COVID-19.


Asunto(s)
COVID-19 , Humanos , Infección Irruptiva , SARS-CoV-2 , Receptores de IgG , Inmunoglobulina G , Anticuerpos Antivirales , Membrana Mucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA