Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 366: 121911, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032255

RESUMEN

Groundwater resources are enormously affected by land use land cover (LULC) dynamics caused by increasing urbanisation, agricultural and household discharge as a result of global population growth. This study investigates the impact of decadal LULC changes in groundwater quality, human and ecological health from 2009 to 2021 in a diverse landscape, West Bengal, India. Using groundwater quality data from 479 wells in 2009 and 734 well in 2021, a recently proposed Water Pollution Index (WPI) was computed, and its geospatial distribution by a machine learning-based 'Empirical Bayesian Kriging' (EBK) tool manifested a decline in water quality since the number of excellent water category decreased from 30.5% to 28% and polluted water increased from 44% to 45%. ANOVA and Friedman tests revealed statistically significant differences (p < 0.0001) in year-wise water quality parameters as well as group comparisons for both years. Landsat 7 and 8 satellite images were used to classify the LULC types applying machine learning tools for both years, and were coupled with response surface methodology (RSM) for the first time, which revealed that the alteration of groundwater quality were attributed to LULC changes, e.g. WPI showed a positive correlation with built-up areas, village-vegetation cover, agricultural lands, and a negative correlation with surface water, barren lands, and forest cover. Expansion in built-up areas by 0.7%, and village-vegetation orchards by 2.3%, accompanied by a reduction in surface water coverage by 0.6%, and 2.4% in croplands caused a 1.5% drop in excellent water and 1% increase in polluted water category. However, ecological risks through the ecological risk index (ERI) exhibited a lower risk in 2021 attributed to reduced high-risk potential zones. This study highlights the potentiality in linking LULC and water quality changes using some advanced statistical tools like GIS and RSM for better management of water quality and landscape ecology.


Asunto(s)
Sistemas de Información Geográfica , Agua Subterránea , Aprendizaje Automático , Calidad del Agua , Agua Subterránea/análisis , India , Monitoreo del Ambiente/métodos , Teorema de Bayes , Humanos , Agricultura
2.
Heliyon ; 10(9): e30326, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726140

RESUMEN

With increasing demand for meat and dairy products, the volume of wastewater generated from the livestock industry has become a significant environmental concern. The treatment of livestock wastewater (LWW) is a challenging process that involves removing nutrients, organic matter, pathogens, and other pollutants from livestock manure and urine. In response to this challenge, researchers have developed and investigated different biological, physical, and chemical treatment technologies that perform better upon optimization. Optimization of LWW handling processes can help improve the efficacy and sustainability of treatment systems as well as minimize environmental impacts and associated costs. Response surface methodology (RSM) as an optimization approach can effectively optimize operational parameters that affect process performance. This review article summarizes the main steps of RSM, recent applications of RSM in LWW treatment, highlights the advantages and limitations of this technique, and provides recommendations for future research and practice, including its cost-effectiveness, accuracy, and ability to improve treatment efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA