Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38400284

RESUMEN

Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.


Asunto(s)
Carcinoma , Exosomas , Masculino , Humanos , Exosomas/química , Biopsia Líquida , Carcinoma/metabolismo , Carcinoma/patología , Lectinas/análisis , Lectinas/metabolismo , Polisacáridos/análisis , Polisacáridos/metabolismo
2.
J Comput Chem ; 44(11): 1138-1147, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36621887

RESUMEN

The interaction between protoporphyrin molecules (donor) and Si nanocrystals (acceptor) up to 2.5 nm for varying distances and orientations is studied by DFT, semi-empirical and TDDFT methods. Simulations show an effect on electronic structure, indicative of electron charge transfer in parallel orientation and small distances and nonelectron energy transfer for different orientations and larger distances. An absorption-emission spectral overlap is observed. The calculations of coupling and energy transfer rates show a distance dependence typical of fluorescence resonance energy transfer (FRET) in the long range, while in the short and ultra-short range the distance dependence indicates electron transfer in addition to FRET. The Si NCs with the smallest size yield larger couplings than the larger nanocrystals. The PPIX/Si NC coupling was enhanced by adding a plasmon nanoparticle as a bridge in the donor-acceptor system. Results using Au nanoparticles show increased energy transfer rates up to 104 and lower distance dependence.

3.
Langmuir ; 39(5): 1764-1774, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36655310

RESUMEN

Despite the importance of thiorphan as a small molecule with vital biological roles, its interactions with zinc oxide (ZnO) nanomaterials that are prospective in drug delivery and theranostic applications have not yet been sufficiently explored. Here the impact of surface polarity of different ZnO facets on thiorphan adsorption is studied both experimentally by atomic force microscopy (AFM) and angle resolved X-ray photoelectron spectroscopy (XPS) and theoretically by force field molecular dynamics (FFMD) and density functional tight binding simulations (DFTB). Polar ZnO surfaces cause the formation of thiorphan nanodots, where the size of the nanodots depends on the direction of dipoles: small (4 nm) nanodots are formed on Zn-face ZnO, while large (25 nm) nanodots are formed on O-face ZnO. Nonpolar ZnO surfaces cause self-assembly into layered nanoislands with characteristic 4 nm layer thickness, which subsequently merge into rigid nanolayers. The self-assembly is shown to be controlled solely by the effect of surface dipole electric field orientation and magnitude, whereas effects of surface chemistry or solution are negligible. The results thus also show a way for controlling the assembly of thiorphan and other molecular nanomaterials for diverse applications.

4.
Chemphyschem ; 23(2): e202100639, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755930

RESUMEN

ZnO biointerfaces with serum albumin have attracted noticeable attention due to the increasing interest in developing ZnO-based materials for biomedical applications. ZnO surface morphology and chemistry are expected to play a critical role on the structural, optical, and electronic properties of albumin-ZnO complexes. Yet there are still large gaps in the understanding of these biological interfaces. Herein we comprehensively elucidate the interactions at such interfaces by using atomic force microscopy and nanoshaving experiments to determine roughness, thickness, and adhesion properties of BSA layers adsorbed on the most typical polar and non-polar ZnO single-crystal facets. These experiments are corroborated by force field (FF) and density-functional tight-binding (DFTB) calculations on ZnO-BSA interfaces. We show that BSA adsorbs on all the studied ZnO surfaces while interactions of BSA with ZnO are found to be considerably affected by the atomic surface structure of ZnO. BSA layers on the (0001‾) surface have the highest roughness and thickness, hinting at a specific upright BSA arrangement. BSA layers on (101‾0) surface have the strongest binding, which is well correlated with DFTB simulations showing atomic rearrangement and bonding between specific amino acids (AAs) and ZnO. Besides the structural properties, the ZnO interaction with these AAs also controls the charge transfer and HOMO-LUMO energy positions in the BSA-ZnO complexes. This ZnO facet-specific protein binding and related structural and electronic effects can be useful for improving the design and functionality of ZnO-based materials and devices.


Asunto(s)
Albúmina Sérica Bovina , Óxido de Zinc , Aminoácidos , Electrónica , Albúmina Sérica Bovina/química , Zinc , Óxido de Zinc/química , Óxido de Zinc/metabolismo
5.
Langmuir ; 35(43): 13844-13852, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31550890

RESUMEN

Nanocrystalline diamond (NCD) layers functionalized with amine-containing functional groups have generated considerable interest as biocompatible substrates for attachment of biomolecules and cells with a view to biosensor and tissue engineering applications. Here we prepare nanoporous diamond layers with the surfaces modified by hydrogen plasma, oxygen plasma, and conformal 7 nm amine-containing plasma polymer (PP). Immobilization of bovine serum albumin (BSA) molecules is characterized on such surfaces. Grazing angle reflectance infrared spectroscopy as well as X-ray photoelectron spectroscopy show that concentration of amine-containing bonds after BSA exposure depends on the type of NCD surface modification. AFM measurements reveal that BSA proteins are physisorbed on H- and O-terminated diamond surfaces in different thicknesses and morphology. When the diamond layers are coated with the amine-containing PP, BSA molecules assume similar thickness and morphology, and their adhesion is significantly increased on both types of the diamond surfaces.


Asunto(s)
Diamante/química , Nanoporos , Gases em Plasma/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Espectrofotometría Infrarroja , Propiedades de Superficie
6.
Phys Chem Chem Phys ; 21(21): 11033-11042, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31089605

RESUMEN

The low-cost efficient generation of renewable energy and its blending with societal lifestyle is becoming increasingly pervasive. Diamond-based inorganic-organic hybrid systems may have an immense, yet still mostly unexplored, potential in photovoltaic solar cells applications. In this work, we study the interactions of polypyrrole (PPy) with diamond nanoparticles (so-called nanodiamonds, NDs) by computational density functional theory (DFT) methods. We compute the structural and electronic properties of such hybrid organic-inorganic systems. During modeling, PPy is chemisorbed and physisorbed on (111) and (100) ND edge-like surface slabs terminated with oxygen, hydroxyl, carboxyl, and anhydride functional groups, i.e., in the arrangements most commonly found in real NDs. Moreover, NDs terminated with an amorphous surface layer (a-C:H, a-C:O) are considered to approach realistic conditions even further. In a predominant number of cases, we obtain the spatial separation of HOMO and LUMO at the interface, facilitating exciton dissociation. Further, there is a favorable energy level alignment for charge transport. The theoretical results, therefore, show the promising potential of PPy-ND composites in photovoltaic applications.

7.
Small ; 12(18): 2499-509, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27000766

RESUMEN

Two profoundly different carbon allotropes - nanocrystalline diamond and graphene - are of considerable interest from the viewpoint of a wide range of biomedical applications including implant coating, drug and gene delivery, cancer therapy, and biosensing. Osteoblast adhesion and proliferation on nanocrystalline diamond and graphene are compared under various conditions such as differences in wettability, topography, and the presence or absence of protein interlayers between cells and the substrate. The materials are characterized in detail by means of scanning electron microscopy, atomic force microscopy, photoelectron spectroscopy, Raman spectroscopy, and contact angle measurements. In vitro experiments have revealed a significantly higher degree of cell proliferation on graphene than on nanocrystalline diamond and a tissue culture polystyrene control material. Proliferation is promoted, in particular, by hydrophobic graphene with a large number of nanoscale wrinkles independent of the presence of a protein interlayer, i.e., substrate fouling is not a problematic issue in this respect. Nanowrinkled hydrophobic graphene, thus, exhibits superior characteristics for those biomedical applications where high cell proliferation is required under differing conditions.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Diamante/farmacología , Grafito/farmacología , Nanopartículas , Células Madre/efectos de los fármacos , Células Cultivadas , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones
8.
Langmuir ; 30(8): 2054-60, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24524343

RESUMEN

We report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces. We show that the nanoporous diamond layers provide IR spectra with a signal gain of about 600% and a significantly improved sensitivity limit. This is attributed to its enhanced internal surface area. The improved sensitivity enabled us to distinguish weak infrared absorption peaks of <10-nm-thick protein layers and thereby to analyze the intimate diamond-molecule interface.


Asunto(s)
Diamante/química , Oro/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Sensibilidad y Especificidad , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Espectroscopía Infrarroja por Transformada de Fourier/métodos
9.
Ultramicroscopy ; 258: 113909, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38157689

RESUMEN

Research investigating the interface between biological organisms and nanomaterials nowadays requires multi-faceted microscopic methods to elucidate the interaction mechanisms and effects. Here we describe a novel approach and methodology correlating data from an atomic force microscope inside a scanning electron microscope (AFM-in-SEM). This approach is demonstrated on bacteria-diamond-metal nanocomposite samples relevant in current life science research. We describe a procedure for preparing such multi-component test samples containing E. coli bacteria and chitosan-coated hydrogenated nanodiamonds decorated with silver nanoparticles on a carbon-coated gold grid. Microscopic topography information (AFM) is combined with chemical, material, and morphological information (SEM using SE and BSE at varied acceleration voltages) from the same region of interest and processed to create 3D correlative probe-electron microscopy (CPEM) images. We also establish a novel 3D RGB color image algorithm for merging multiple SE/BSE data from SEM with the AFM surface topography data which provides additional information about microscopic interaction of the diamond-metal nanocomposite with bacteria, not achievable by individual analyses. The methodology of CPEM data interpretation is independently corroborated by further in-situ (EDS) and ex-situ (micro-Raman) chemical characterization as well as by force volume AFM analysis. We also discuss the broader applicability and benefits of the methodology for life science research.

10.
Langmuir ; 29(23): 7111-7, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23679138

RESUMEN

Constant electrical current in the range of -1 to -200 pA is applied by an atomic force microscope (AFM) in contact mode regime to induce and study local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films. The NCD films are deposited on silicon in 70 nm thickness and with 60% relative sp(2) phase content. Charging current is monitored by conductive AFM. Electric potential contrast induced by the current is evaluated by Kelvin force microscopy (KFM). KFM shows well-defined, homogeneous, and reproducible microscopic patterns that are not influenced by inherent tip-surface junction fluctuations during the charging process. The charged patterns are persistent for at least 72 h due to charge trapping inside the NCD film. The current-induced charging also clearly reveals field-induced detrapping at current amplitudes >-50 pA and tip instability at >-150 pA, both of which limit the achievable potential contrast. In addition, we show that the field also determines the range of electronic states that can trap the charge. We present a model and discuss implications for control of the nanoscale charging process.


Asunto(s)
Diamante/química , Nanopartículas/química , Nanotecnología , Microscopía de Fuerza Atómica , Electricidad Estática
11.
Langmuir ; 29(5): 1634-41, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23305296

RESUMEN

Electrical potential of nanoparticles under relevant environment is substantial for their applications in electronics as well as sensors and biology. Here, we use Kelvin force microscopy to characterize electrical properties of semiconducting diamond nanoparticles (DNPs) of 5-10 nm nominal size and metallic gold nanoparticles (20 and 40 nm) on Si and Au substrates under ambient conditions. The DNPs are deposited on Si and Au substrates from dispersions with well-defined zeta-potential. We show that the nanoparticle potential depends on its size and that the only reliable potential characteristic is a linear fit of this dependence within a 5-50 nm range. Systematically different potentials of hydrogenated, oxidized, and graphitized DNPs are resolved using this methodology. The differences are within 50 mV, that is much lower than on monocrystalline diamond. Furthermore, all of the nanoparticles assume their potential within -60 mV according to the Au and Si substrate, thus gaining up to 0.4 V difference. This effect is attributed to DNP charging by charge transfer and/or polarization. This is confirmed by secondary electron emission. Such effects are general with broad implications for nanoparticles applications.


Asunto(s)
Estimulación Eléctrica , Oro/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
12.
Ultramicroscopy ; 253: 113816, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37531754

RESUMEN

Atomic force microscopy (AFM) is nowadays indispensable versatile scanning probe method widely employed for fundamental and applied research in physics, chemistry, biology as well as industrial metrology. Conventional AFM systems can operate in various environments such as ultra-high vacuum, electrolyte solutions, or controlled gas atmosphere. Measurements in ambient air are prevalent due to their technical simplicity; however, there are drawbacks such as formation of water meniscus that greatly increases attractive interaction (adhesion) between the tip and the sample, reduced spatial resolution, and too strong interactions leading to tip and/or sample modifications. Here we show how the attractive forces in AFM under ambient conditions can be used with advantage to probe surface properties in a very sensitive way even on highly mobile molecules and nanoparticles. We introduce a stable non-contact non-resonant (NCNR) AFM method which enables to reliably perform measurements in the attractive force regime even in air by controlling the tip position in the intimate surface vicinity without touching it. We demonstrate proof-of-concept results on helicene-based macrocycles, DNA on mica, and nanodiamonds on SiO2. We compare the results with other conventional AFM regimes, showing NCNR advantages such as higher spatial resolution, reduced tip contamination, and negligible sample modification. We analyze principle physical and chemical mechanisms influencing the measurements, discuss issues of stability and various possible method implementations. We explain how the NCNR method can be applied in any AFM system by a mere software modification. The method thus opens a new research field for measurements of highly sensitive and mobile nanoscale objects under air and other environments.

13.
Nanoscale ; 15(4): 1542-1553, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36383069

RESUMEN

Fully aromatic helicenes are attractive building blocks for the construction of inherently chiral π-conjugated macrocyclic nanocarbons. These hitherto rare molecular architectures are envisaged to exhibit remarkable (chir)optical properties, self-assembly, charge/spin transport, induced ring current or a fascinating Möbius topology. Here the synthesis of helically chiral macrocycles that combine angular dibenzo[5]helicene units as corners and linear trans-stilbene-4,4'-diyl linkers as edges is reported. By subjecting a racemic or enantiopure divinyl derivative of dibenzo[5]helicene to olefin metathesis, which was catalysed by a 2nd generation Piers catalyst under kinetic control, a π-conjugated helicene cyclic trimer (33%) and a tetramer (22%) were obtained, which were separated by GPC. Combining racemic/asymmetric synthesis with the resolution of enantiomers/diastereomers by SFC/HPLC on a chiral column, both homochiral (+)-(M,M,M)/(-)-(P,P,P) and heterochiral (+)-(M,M,P)/(-)-(M,P,P) stereoisomers of the helicene cyclic trimer could be obtained in an enantio- and diastereomerically enriched form. The complete energy profile of their interconversion was compiled on the basis of kinetic measurements and numerical solution of the proposed kinetic model. In equilibrium, the heterochiral diastereomer predominates over the homochiral one (ca. 75 : 25 at 76 °C). π-Conjugation along a large, twisted circuit in the helicene cyclic trimer is rather disrupted, stabilising this formally antiaromatic molecule. Using an optimised PeakForce mode of ambient AFM, the self-assembly of otherwise highly mobile stereoisomers of the helicene cyclic trimer on the HOPG surface could be studied. Irrespective of the stereochemistry, strong preferences for the edge-to-edge interaction of these macrocycles were found to form very long parallel 1D molecular stripes in ordered 2D nanocrystals, a result also supported by molecular dynamics simulations. Six trityl groups, initially introduced to the macrocycle to enhance solubility, serve as a key "molecular Velcro" system in the self-assembly of macrocycles to maximise their mutual van der Waals interactions.

14.
ACS Appl Mater Interfaces ; 15(24): 29072-29083, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37279106

RESUMEN

Solely light-induced water splitting represents a promising avenue for a carbon-free energy future, based on reliable energy sources. Such processes can be performed using coupled semiconductor materials (the so-called direct Z-scheme design) that facilitate spatial separation of (photo)excited electrons and holes, prevent their recombination, and allow water-splitting half-reactions proceeding at each corresponding semiconductor side. In this work, we proposed and prepared a specific structure, based on WO3g-x/CdWO4/CdS coupled semiconductors, created by annealing of a common WO3/CdS direct Z-scheme. WO3-x/CdWO4/CdS flakes were further combined with a plasmon-active grating for the creation of the so-called artificial leaf design, making possible complete utilization of the sunlight spectrum. The proposed structure enables water splitting with high production of stoichiometric amounts of oxygen and hydrogen without undesirable catalyst photodegradation. Several control experiments confirm the creation of electrons and holes participating in the water splitting half-reaction in a spatially selective manner.

15.
Nanoscale Adv ; 5(17): 4402-4414, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37638158

RESUMEN

Nanodiamonds (NDs) are versatile, broadly available nanomaterials with a set of features highly attractive for applications from biology over energy harvesting to quantum technologies. Via synthesis and surface chemistry, NDs can be tuned from the sub-micron to the single-digit size, from conductive to insulating, from hydrophobic to hydrophilic, and from positively to negatively charged surface by simple annealing processes. Such ND diversity makes it difficult to understand and take advantage of their electronic properties. Here we present a systematic correlated study of structural and electronic properties of NDs with different origins and surface terminations. The absolute energy level diagrams are obtained by the combination of optical (UV-vis) and photoelectron (UPS) spectroscopies, Kelvin probe measurements, and energy-resolved electrochemical impedance spectroscopy (ER-EIS). The energy levels and density of states in the bandgap of NDs are correlated with the surface chemistry and structure characterized by FTIR and Raman spectroscopy. We show profound differences in energy band shifts (by up to 3 eV), Fermi level position (from p-type to n-type), electron affinity (from +0.5 eV to -2.2 eV), optical band gap (5.2 eV to 5.5 eV), band gap states (tail or mid-gap), and electrical conductivity depending on the high-pressure, high-temperature and detonation origin of NDs as well as on the effects of NDs' oxidation, hydrogenation, sp2/sp3 carbon phases and surface adsorbates. These data are fundamental for understanding and designing NDs' optoelectrochemical functional mechanisms in diverse application areas.

16.
Langmuir ; 28(1): 587-92, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22066858

RESUMEN

In this article, we report on the low-level detection of hydrogen peroxide, a key player in the redox signaling pathway and a toxic product in the cellular system, using a colorimetric solution assay. Amine-terminated undoped nanocrystalline diamond thin films were grown on glass using a linear-antenna microwave plasma CVD process. The diamond surface consists mainly of -NH(2) termination. The aminated diamond surface was decorated with horseradish peroxidase (HRP) enzyme using carbodiimide coupling chemistry. The success of the HRP immobilization was confirmed by X-ray photoelectron spectroscopy (XPS). The enzymatic activity of immobilized HRP was determined with a colorimetric test based on the HRP-catalyzed oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sufonic acid (ABTS) in the presence of hydrogen peroxide. The surface coverage of active HRP was estimated to be Γ = 7.3 × 10(13) molecules cm(-2). The use of the functionalized diamond surface as an optical sensor for the detection of hydrogen peroxide with a detection limit of 35 nM was demonstrated.


Asunto(s)
Diamante , Peroxidasa de Rábano Silvestre/química , Peróxido de Hidrógeno/análisis , Nanoestructuras , Cristalización , Espectroscopía de Fotoelectrones
17.
Sci Rep ; 12(1): 5264, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347219

RESUMEN

The present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples. The homogeneous nanostructured layer of BMP-7 on the NCD coating created by a physisorption method was confirmed by AFM. The osteogenic maturation of hFOB 1.19 cells in vitro was only slightly enhanced by the O-NCD coating alone without any increase in the mineralization of the matrix. Functionalization of the coating with BMP-7 resulted in more pronounced cell osteogenic maturation and increased extracellular matrix mineralization. Similar results were obtained in vivo from micro-CT and histological analyses of rabbit distal femurs with screws implanted for 4 or 12 weeks. While the O-NCD-coated implants alone promoted greater thickness of newly-formed bone in direct contact with the implant surface than the bare material, a further increase was induced by BMP-7. It can be therefore concluded that O-NCD coating functionalized with BMP-7 is a promising surface modification of metallic bone implants in order to improve their osseointegration.


Asunto(s)
Proteína Morfogenética Ósea 7 , Oseointegración , Aleaciones , Animales , Proteína Morfogenética Ósea 7/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Diamante/química , Matriz Extracelular , Conejos , Titanio
18.
Colloids Surf B Biointerfaces ; 204: 111689, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33932892

RESUMEN

Due to high biocompatibility, miniaturization, optical transparency and low production cost together with high radiation hardness the diamond-based sensors are considered promising for radiation medicine and biomedicine in general. Here we present detection of fibroblast cell culture properties by nanocrystalline diamond solution-gated field-effect transistors (SG-FET), including effects of gamma irradiation. We show that blank nanocrystalline diamond field-effect biosensors are stable at least up to 300 Gy of γ irradiation. On the other hand, gate current of the diamond SG-FET biosensors with fibroblastic cells increases exponentially over an order of magnitude with increasing radiation dose. Extracellular matrix (ECM) formation is also detected and analyzed by correlation of electronic sensor data with optical, atomic force, fluorescence, and scanning electron microscopies.


Asunto(s)
Técnicas Biosensibles , Diamante , Matriz Extracelular , Fibroblastos , Microscopía Electrónica de Rastreo
19.
Int J Nanomedicine ; 16: 3541-3554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079247

RESUMEN

PURPOSE: Nanomaterials for antimicrobial applications have gained interest in recent years due to the increasing bacteria resistance to conventional antibiotics. Wound sterilization, water treatment and surface decontamination all avail from multifunctional materials that also possess excellent antibacterial properties, eg zinc oxide (ZnO). Here, we assess and compare the effects of synthesized hedgehog-like ZnO structures and commercial ZnO particles with and without mixing on the inactivation of bacteria on surfaces and in liquid environments. METHODS: Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria in microbial culture medium were added to reverse spin bioreactors that contained different concentrations of each ZnO type to enable dynamic mixing of the bacteria-ZnO suspensions. Optical density of the bacteria-ZnO suspensions was measured in real-time and the number of viable bacteria after 24 h exposure was determined using standard microbiological techniques. The concentration of zinc ion generated from ZnO dissolution in different liquid types was estimated from the dynamic interaction exposure. Static antibacterial tests without agitation in liquid media and on agar surface were performed for comparison. RESULTS: A correlation between increasing ZnO particle concentration and reduction in viable bacteria was not monotonous. The lowest concentration tested (10 µg/mL) even stimulated bacteria growth. The hedgehog ZnO was significantly more antibacterial than commercial ZnO particles at higher concentrations (up to 1000 µg/mL tested), more against E. coli than S. aureus. Minimum inhibitory concentration in microwell plates was correlated with those results. No inhibition was detected for any ZnO type deposited on agar surface. Zinc ion release was greatly suppressed in cultivation media. Scanning electron microscopy images revealed that ZnO needles can pierce membrane of bacteria whereas the commercial ZnO nanoparticles rather agglomerate on the cell surface. CONCLUSION: The inhibition effects are thus mainly controlled by the interaction dynamics between bacteria and ZnO, where mixing greatly enhances antibacterial efficacy of all ZnO particles. The efficacy is modulated also by ZnO particle shapes, where hedgehog ZnO has superior effect, in particular at lower concentrations. However, at too low concentrations, ZnO can stimulate bacteria growth and must be thus used with caution.


Asunto(s)
Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Erizos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Óxido de Zinc/química , Óxido de Zinc/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Pruebas de Sensibilidad Microbiana
20.
Sci Rep ; 11(1): 590, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33437005

RESUMEN

Nanoscale composite of detonation nanodiamond (DND) and polypyrrole (PPy) as a representative of organic light-harvesting polymers is explored for energy generation, using nanodiamond as an inorganic electron acceptor. We present a technology for the composite layer-by-layer synthesis that is suitable for solar cell fabrication. The formation, pronounced material interaction, and photovoltaic properties of DND-PPy composites are characterized down to nanoscale by atomic force microscopy, infrared spectroscopy, Kelvin probe, and electronic transport measurements. The data show that DNDs with different surface terminations (hydrogenated, oxidized, poly-functional) assemble PPy oligomers in different ways. This leads to composites with different optoelectronic properties. Tight material interaction results in significantly enhanced photovoltage and broadband (1-3.5 eV) optical absorption in DND/PPy composites compared to pristine materials. Combination of both oxygen and hydrogen functional groups on the nanodiamond surface appears to be the most favorable for the optoelectronic effects. Theoretical DFT calculations corroborate the experimental data. Test solar cells demonstrate the functionality of the concept.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA