Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Monit Assess ; 196(5): 458, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635016

RESUMEN

The poultry industry is a significant source of animal protein, vitamins, and minerals, particularly through the consumption of chicken meat. In order to conduct the study, 100 samples of liver, chicken feed, and drinking water were collected in nearby areas of Lahore. The investigation aims to detect the presence of specific heavy metals in the collected samples. For this purpose, atomic absorption spectroscopy (AAS) was used to detect heavy metals after proper preparation of the samples. The experimentally observed data were analyzed through a novel statistical approach known as neutrosophic statistics. It was observed that copper (Cu), zinc (Zn), and cadmium (Cd) were the most prominent metals detected with contamination above the safe limits (for chicken drinking water (Zn = 23.09±13.67 mg/L, Cu = 3.84±3.04 mg/L, Cd = 0.805±0.645 mg/L, Pb = 0.275±0.095 mg/L, As = 0.982±0.978 mg/L), for chicken feed (Zn = 2.705±0.715 mg/kg, Cu = 1.85±0.53 mg/kg, Cd = 3.065±1.185 mg/kg, Pb = 0.215±0.175 mg/kg, As = 0.68±0.22 mg/kg), and chicken's liver (Zn = 3.93±0.66 mg/kg, Cu = 1.2±0.52 mg/kg, Cd = 0.07±0.05 mg/kg, Pb = 0.805±0.775 mg/kg, As = 1.05±0.8 mg/kg)). Similarly, the statistical analysis leads that the findings emphasize the importance of monitoring and mitigating heavy metal contamination in the poultry industry to ensure the safety and quality of poultry products.


Asunto(s)
Agua Potable , Metales Pesados , Animales , Pollos , Cadmio , Pakistán , Plomo , Monitoreo del Ambiente , Zinc
2.
Curr Hypertens Rep ; 25(10): 271-286, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37561240

RESUMEN

PURPOSE OF REVIEW: This review article summarizes the role of coagulation in the pathogenesis of hypertension. It specifically focuses on significant factors and markers associated with coagulation, including D-dimer, fibrinogen and fibrin, prothrombin, P-selectin, soluble urokinase plasminogen activator receptor, thrombomodulin, tissue factor, tissue plasminogen activator, von Willebrand factor, ß-thromboglobulin, and Stuart-Prower factor. RECENT FINDINGS: D-dimer levels were elevated in hypertensive individuals compared to healthy controls, and the levels increased with the severity of hypertension. These findings indicate that increased coagulation activity of fibrin plays a role in the development of thromboembolic complications in hypertensive patients. Additionally, both fibrinogen levels and D-dimer levels displayed a positive correlation with the duration of hypertension, suggesting that these biomarkers were positively associated with the length of time an individual had been hypertensive. Increased systolic and diastolic blood pressures have been linked to higher levels of prothrombin time and activated partial thromboplastin time in individuals with hypertension as well as those with normal blood pressure. Also, the presence of P-selectin, produced by activated platelets and endothelial cells during angiotensin II stimulation, played a role in the development of cardiac inflammation and fibrosis associated with hypertension. Moreover, the change in systolic blood pressure was associated with baseline soluble urokinase plasminogen activator receptor (suPAR) in hypertensive participants, and the change in suPAR levels was associated with the development of hypertension. Moreover, it was observed a decrease in thrombomodulin expression in the placenta of preeclamptic patients, suggesting its potential involvement in placental dysfunction, possibly driven by an imbalance in angiogenic factors. Tissue factors and autophagy might have significant implications in the pathogenesis of chronic thromboembolic pulmonary hypertension, particularly in the context of vascular remodelling. Likewise, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) might be a promising biomarker for the early detection of pulmonary arterial hypertension and the von Willebrand factor is a candidate prognostic biomarker. The arterial ß-thromboglobulin levels were significantly lower than venous levels. This article concludes that D-dimer, fibrinogen and fibrin, prothrombin, P-selectin, soluble urokinase plasminogen activator receptor, thrombomodulin, tissue factor, tissue plasminogen activator, von Willebrand factor, and ß-thromboglobulin are important factors involved in the pathogenesis of hypertension.


Asunto(s)
Hipertensión , Activador de Tejido Plasminógeno , Humanos , Femenino , Embarazo , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Selectina-P , Trombomodulina , beta-Tromboglobulina , Protrombina/metabolismo , Tromboplastina , Factor de von Willebrand/metabolismo , Células Endoteliales/metabolismo , Placenta , Fibrinógeno/metabolismo , Biomarcadores
3.
Molecules ; 28(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38138453

RESUMEN

Thin films of zinc oxide (ZnO) doped with transition metals have recently gained significant attention due to their potential applications in a wide range of optoelectronic devices. This study focuses on ZnO thin films doped with the transition metals Co, Fe, and Zr, exploring various aspects of their structural, morphological, optical, electrical, and photoluminescence properties. The thin films were produced using RF and DC co-sputtering techniques. The X-ray diffraction (XRD) analysis revealed that all the doped ZnO thin films exhibited a stable wurtzite crystal structure, showcasing a higher structural stability compared to the undoped ZnO, while the atomic force microscopy (AFM) imaging highlighted a distinctive granular arrangement. Energy-dispersive X-ray spectroscopy was employed to confirm the presence of transition metals in the thin films, and Fourier-transform infrared spectroscopy (FTIR) was utilized to investigate the presence of chemical bonding. The optical characterizations indicated that doping induced changes in the optical properties of the thin films. Specifically, the doped ZnO thin film's bandgap experienced a significant reduction, decreasing from 3.34 to 3.30 eV. The photoluminescence (PL) analysis revealed distinguishable emission peaks within the optical spectrum, attributed to electronic transitions occurring between different bands or between a band and an impurity. Furthermore, the introduction of these transition metals resulted in decreased resistivity and increased conductivity, indicating their positive influence on the electrical conductivity of the thin films. This suggests potential applications in solar cells and light-emitting devices.

4.
J Nanobiotechnology ; 20(1): 8, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983521

RESUMEN

BACKGROUND: Changing climate enhances the survival of pests and pathogens, which eventually affects crop yield and reduces its economic value. Novel approaches should be employed to ensure sustainable food security. Nano-based agri-chemicals provide a distinctive mechanism to increase productivity and manage phytopathogens, with minimal environmental distress. In vitro and in greenhouse studies were conducted to evaluate the potential of green-synthesized iron-oxide nanoparticles (IONPs) in suppressing wilt infection caused by Fusarium oxysporum f. sp. lycospersici, and improving tomato growth (Solanum lycopersicum) and fruit quality. RESULTS: Various microwave powers (100-1000 W) were used to modulate the properties of the green-synthesized IONPs, using spinach as a starting material. The IONPs stabilized with black coffee extract were substantively characterized using X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy, dielectric and impedance spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM and TEM, respectively), and magnetization analysis. XRD revealed a cubic magnetite (Fe3O4) phase with super-paramagnetic nature, detected at all microwave powers. The binding energies of Fe 2p3/2 (710.9 eV) and Fe 2p1/2 (724.5 eV) of Fe3O4 NPs were confirmed using XPS analysis at a microwave power of 1000 W. Uniform, spherical/cubical-shaped particles with an average diameter of 4 nm were confirmed using SEM and TEM analysis. A significant reduction in mycelial growth and spore germination was observed upon exposure to different IONP treatments. Malformed mycelium, DNA fragmentation, alternation in the cell membrane, and ROS production in F. oxysporum indicated the anti-microbial potential of the IONPs. The particles were applied both through the root (before transplantation) and by means of foliar application (after two weeks) to the infected seedlings. IONPs significantly reduced disease severity by an average of 47.8%, resulting in increased plant growth variables after exposure to 12.5 µg/mL of IONPs. Analysis of photosynthetic pigments, phenolic compounds, and anti-oxidant enzymes in the roots and shoots showed an increasing trend after exposure to various concentrations of IONPs. Correspondingly, lycopene, vitamin C, total flavonoids, and protein content were substantially improved in tomato fruits after treatment with IONPs. CONCLUSION: The findings of the current investigation suggested that the synthesized IONPs display anti-fungal and nutritional properties that can help to manage Fusarium wilt disease, resulting in enhanced plant growth and fruit quality.


Asunto(s)
Antifúngicos , Fusarium/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro , Solanum lycopersicum , Spinacia oleracea/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacología , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Microondas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
5.
Pak J Pharm Sci ; 31(1): 129-135, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29348094

RESUMEN

Biofilm is a complex community of single or different types of microorganisms (bacteria, viruses, fungi, protozoa) attached to a surface and stick to each other through production of extracellular matrix. Salmonella typhi forms biofilm on cholesterol gallstones resulting in carrier state. Once formed, biofilm is difficult to treat. To date cholecystectomy is the only cure for this condition. Manuka honey is known to have tremendous antibiofilm activity against various organisms. S. typhi biofilm was grown in vitro on clinical samples of human cholesterol gallstones by Gallstone tube assay method for 12 days. Biofilm mass was quantified on day 1, 5, 7, 9 and 12 by crystal violet assay and was also examined by scanning electron microscope. Three concentrations w/v of Manuka honey (40%, 60% and 80%) were used, each one at 24, 48 and 72 hours. The most effective concentration (80% w/v) was repeated on two sets of gallstones. Biofilm mass was re quantified by crystal violet assay and was examined by scanning electron microscope. S. typhi formed uniform biofilm on cholesterol gallstone surface. The optical density measurements exhibited a rising pattern with time thereby indicating an increase in biofilm mass. It was 0.2 on day 1 and 0.9 on day 12. With 80% w/v Manuka honey, biofilm mass decreased most effectively with 0.5 OD after 72 hours. Biofilm formation by S, typhi on gallstones is surface specific and bile dependant. Either increasing the duration (beyond 72 hours) of the effective concentration (80% w/v) of honey or increasing the concentration (above 80%) of honey for a specific duration (72 hour) may cause complete disruption of the S. typhi biofilm on gallstone. S. typhi forms biofilm on cholesterol gallstones surface in vitro and it can be visualized by scanning electron microscopy. Biofilm mass can be quantified using crystal violet assay. Among various concentrations 80% Manuka honey for 72 hours is most effective in disrupting S. typhi biofilm on gallstones in vitro as evident from crystal violet assay.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cálculos Biliares/microbiología , Miel , Salmonella typhi/efectos de los fármacos , Antibacterianos/administración & dosificación , Biopelículas/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Humanos , Técnicas In Vitro , Leptospermum , Pruebas de Sensibilidad Microbiana , Salmonella typhi/crecimiento & desarrollo , Factores de Tiempo
6.
Heliyon ; 10(8): e29553, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660268

RESUMEN

In the recent development of energy storage devices, the scientific study has demonstrated a significant interest in the applications of the magnesium iron oxide (MgFe2O4) nanoparticles. In this work, we present synthesized novel MgFe2O4 nanoparticles at different molarities (0.1-0.5 M), via hydrothermal technique. An X-ray Diffractometer was used to study the phase analysis of the prepared samples at different molarities. A pure cubic phase of the MgFe2O4 is observed at molar concentrations of 0.3 M and 0.4 M. However, the mixed phases consisting of (MgFe2O4 + Î³-Fe2O3) were also observed at 0.1 M, 0.2 M, and 0.5 M. The pure cubic MgFe2O4 nanoparticles depict the large value of crystallite size, 19.5 nm, and the lowest dislocation density and strain. The vibrating Sample Magnetometer shows the ferromagnetic nature of the pure MgFe2O4 with a high saturation magnetization. The value of saturation magnetization surged from 36.88 emu/g to 55.2 emu/g at 0.4 M concentration. The dielectric response of the materials as a function of applied frequency was studied thoroughly by using an Impedance Analyzer. The highest value of dielectric constant and low tangent loss was also reported at 0.4 M. Cole-Cole plots are the affirmation of the contribution of both grains and grain boundaries in the charge mechanism. These distinctive features make the synthesized material an excellent choice for future spintronics and energy storage devices.

7.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276736

RESUMEN

This study explored the potential of Fe3O4, SnFe2O4, and CoFe2O4 nanoparticles as larvicidal and adulticidal agents against Aedes aegypti (A. aegypti) larvae and adults, which are vectors for various diseases. This research involved the synthesis of these nanoparticles using the coprecipitate method. The results indicate that CoFe2O4 nanoparticles are the most effective in both larvicidal and adulticidal activities, with complete mortality achieved after 96 h of exposure. SnFe2O4 nanoparticles also showed some larvicidal and adulticidal efficacy, although to a lesser extent than the CoFe2O4 nanoparticles. Fe3O4 nanoparticles exhibited minimal larvicidal and adulticidal effects at low concentrations but showed increased efficacy at higher concentrations. The study also revealed the superparamagnetic nature of these nanoparticles, making them potentially suitable for applications in aquatic environments, where A. aegypti larvae often thrive. Additionally, the nanoparticles induced observable damage to the gut structure of the mosquitoes and larvae, which could contribute to their mortality. Overall, this research suggests that CoFe2O4 nanoparticles, in particular, hold promise as environment-friendly and effective agents for controlling A. aegypti mosquitoes, which are responsible for the transmission of diseases such as dengue fever, Zika virus, and Chikungunya. Further studies and field trials are needed to validate their practical use in mosquito control programs.

8.
R Soc Open Sci ; 11(5): 240153, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076796

RESUMEN

With the wide potential of organic field-effect transistors in all the modern electronic circuitries, researchers are grappling with the challenge of poor charge transport and hence lower mobility in organic polymers. Low-charge carrier mobility is mainly due to disorder in the molecular packing of organic semiconductors along with other factors, such as impurities, defects and interactions between molecules. The current research work has been conducted to align the molecular chains of poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-|||b:5,4-|b']|dithiophen-2-yl)-alt-[1,2,5]thiadiazolo-[3,4-c]pyridine] (PCDTPT) using directional coating techniques such as dip coating and brush coating on nano-grooved substrates. Long-range order of polymer chains was clearly observed along the direction of brush coating and nanogrooves in optical and atomic force microscope (AFM) images while transmission spectra confirmed decreased pi-pi stacking for the polymer films deposited by this technique. By comparing the mobility performance of brush-coated devices with other techniques, we found a remarkable mobility enhancement of 90 times that of conventional spin-coated device and 24 times enhancement compared with the dip-coated device for the case when the alignment of polymer chains was parallel to the channel. All the fabrication and characterizations were performed in the ambient environment. This study demonstrates a potential approach to align the polymers on long and short ranges hence providing a route for high-performing devices in ambient conditions.

9.
J Mech Behav Biomed Mater ; 149: 106215, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984284

RESUMEN

The piezoelectric effect is widely known to have a significant physiological function in bone development, remodeling, and fracture repair. As a well-known piezoelectric material, barium titanate is particularly appealing as a scaffold layer to improve bone tissue engineering applications. Currently, the chemical bath deposition method is used to prepare green synthesized barium titanate coatings to improve mechanical and biological characteristics. Molarity of the solutions, an essential parameter in chemical synthesis, is changed at room temperature (0.1-1.2 Molar) to prepare coatings. The XRD spectra for as deposited coatings indicate amorphous behavior, while polycrystalline nature of coatings is observed after annealing (300 °C). Coatings prepared with solutions of relatively low molarities, i.e. from 0.1 to 0.8 M, exhibit mixed tetragonal - cubic phases. However, the tetragonal phase of Perovskite barium titanate is observed using solution molarities of 1.0 M and 1.2 M. Relatively high value of transmission, i.e. ∼80%, is observed for the coatings prepared with high molarities. Band gap of annealed coatings varies between 3.47 and 3.70 eV. For 1.2 M sample, the maximum spontaneous polarization (Ps) is 0.327x10-3 (µC/cm2) and the residual polarization (Pr) is 0.072x10-3 (µC/cm2). For 1.2M solution, a high hardness value (1510 HV) is recorded, with a fracture toughness of 28.80 MPam-1/2. Low values of weight loss, after dipping the coatings in simulated body fluid, is observed. The antibacterial activity of BaTiO3 is tested against E. coli and Bacillus subtilis. Drug encapsulation capability is also tested for different time intervals. As a result, CBD-based coatings are a promising nominee for use as scaffold and protective coatings.


Asunto(s)
Escherichia coli , Óxidos , Bario/química , Titanio/farmacología , Titanio/química
10.
Heliyon ; 10(3): e24492, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333808

RESUMEN

Thin films of cadmium telluride (CdTe) have attained the attention of researchers due to the potential application in solar cells. However, cost-effective fabrication of solar cells based on thin films along with remarkable efficiency and control over optical properties is still a challenging task. This study presents an analysis of the structural, optical and electrical properties of undoped and Cu-doped CdTe thin films fabricated on ITO coated glass substrates using an electrodeposition process with a focus on practical applications. Electrolytes of cadmium (Cd), tellurium (Te) and copper (Cu) are prepared with a low molarity of 0.1 M. Thin films are deposited by keeping current density in the range of 0.12-0.3 mA/cm2. Copper doping is varied (2-10 wt%) for the optimized sample. X-ray diffraction crystallography indicates that both undoped CdTe and Cu-doped CdTe films crystallize into a dominant hexagonal lattice. Direct energy band gap is observed for both undoped and doped conditions. The study revealed a drop in the optical band gap energy to ∼1.46 eV with the increase in doping (Cu) concentration from 2 to 10 wt%. Increase in mobility and conductivity is observed with the increase in current density of the deposited undoped CdTe thin films. Whereas, Cu doping of 6 wt% produced thin films with acceptable mobility and conductivity for the doped samples. Furthermore, photoluminescence (PL) spectroscopy unveiled a multitude of emission peaks encompassing the visible spectrum, arising from the combination of electrons and holes through both direct and indirect recombination processes. Findings of this study suggest that chemically produced CdTe thin films would be suitable for use as low-cost applications pertaining to solar cells.

11.
ACS Omega ; 8(36): 32765-32774, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37720735

RESUMEN

In biomaterials, a substantial amount of research has been placed on the mechanical properties of biomolecules and their interactions with body fluids. Bovine serum albumin (BSA) is a widely studied model protein, while bovine submaxillary gland mucin (BSM) is another cow-derived protein frequently employed in research. Films were examined with contact resonance atomic force microscopy (CR-AFM), and the results showed that the mechanical characteristics of the films were affected by the relative humidity. We quantitatively analyze the viscoelasticity of these proteins after they have been subjected to humidity by measuring the resonance frequency and quality factor. The findings indicate that prolonged humidity exposure has a different effect on the mechanical properties of BSA and BSM films. The results show that after exposure to humidity, the resonance peaks of BSA shift to the left, indicating stiffness, while those of BSM shift to the right, indicating hydration. Moreover, BSM's hydration is caused by relative humidity, leading to a constant increase in resonance frequency and material softness. Contrarily, BSA showed a decrease in contact resonance frequency due to ongoing strain-induced deformation, indicating increased material stiffness. The findings have significance for the design and development of biomaterials for a variety of applications, such as the delivery of drugs, the engineering of tissue, and the development of biosensors. Our research demonstrates that CR-AFM has the potential to become a non-invasive and sensitive method that can be used to characterize the mechanical characteristics of biomolecules and their interactions with bodily fluids.

12.
J Mech Behav Biomed Mater ; 138: 105635, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603524

RESUMEN

A wide range of bioactive materials have been investigated for tissue engineering and regeneration. Barium titanate is a promising smart material to be used as scaffold for bone tissue engineering. Barium titanate coatings are prepared in the present study using chemical bath deposition technique. Coatings are prepared at room temperature with the variation in solution molarity from 0.1 to 1.2 M. Perovskite tetragonal phase is observed after annealing the samples at 300 °C using 1.0-1.2 M solutions. Normal-anomalous dielectric response is observed for annealed coatings. Maximum transmission of ∼55% and ∼82% is observed under as-prepared and annealed coatings, respectivly. Variation in direct band gap, i.e. 3.45-3.64 eV, is observed with varying molarity. High hardness of the coatings (∼1180 HV) is observed at 1.2M with fracture toughness of ∼22 MPam-1/2. Biodegradation studies show smaller values of weight loss even after immersion in simulated body fluid (SBF) after 26 weeks. Barium titanate coatings also show high antioxidant activity. BaTiO3's antibacterial reaction is evaluated against microorganisms such as Escherichia coli (E. coli) and Staphylococcus aureus. Antibacterial activity shows highest zone of inhibition (∼31 mm) against Staphylococcus aureus bacteria. Quantitative real-time PCR is used to assess the gene expression profile in cultivated cells. Thus, coatings produced without the use of hazardous solvents/reagents utilizing CBD technique are a potential material for biomedical applications.


Asunto(s)
Materiales Biocompatibles Revestidos , Escherichia coli , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Bario , Antibacterianos/farmacología , Antibacterianos/química
13.
ACS Omega ; 8(6): 5808-5819, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816704

RESUMEN

The present work demonstrates the systematic incorporation of different concentrations of graphene oxide (GO) into a fixed amount of polyacrylic acid (PAA)-doped SnO2 quantum dots (QDs) through a co-precipitation approach. The research aimed to evaluate the catalytic and antibacterial actions of GO/PAA-SnO2 QDs. Moreover, optical properties, surface morphologies, crystal structures, elemental compositions, and d-spacings of prepared QDs were examined. X-ray diffraction patterns revealed the tetragonal configuration of SnO2, and the crystallinity of QDs was suppressed upon dopants verified by the SAED patterns. Electronic spectra identified the blue shift by incorporating GO and PAA led to a reduction in band gap energy. Fourier transform infrared spectra showed the existence of rotational and vibrational modes associated with the functional groups during the synthesis process. A drastic increase in the catalytic efficacy of QDs was observed in the neutral medium by including dopants, indicating that GO/PAA-SnO2 is a promising catalyst. GO/PAA-SnO2 showed strong bactericidal efficacy against Escherichia coli (E. coli) at higher GO concentrations. Molecular docking studies predicted the given nanocomposites, i.e., SnO2, PAA-SnO2, and GO/PAA-SnO2, as potential inhibitors of beta-lactamaseE. coli and DNA gyraseE. coli.

14.
Biomedicines ; 11(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37760791

RESUMEN

Green synthesis of metallic nanoparticles is an auspicious method of preparing nanoparticles using plant extracts that have lesser toxicity to animal cells and the host. In the present work, we analyzed the antibacterial activity of Citrullus colocynthis and Psidium guajava-mediated silver nanoparticles (Cc-AgNPs and Pg-AgNPs, respectively) against Aeromonas hydrophila (A. hydrophila) in an in vivo assay employing Labeo rohita (L. rohita). L. rohita were divided into six groups for both Cc-AgNPs and Pg-AgNPs treatments separately: Control, A. hydrophila infected, A. hydrophila + Ampicillin, A. hydrophila + Cc/Pg-AgNPs (25 µg/L), A. hydrophila + Cc/Pg-AgNPs (50 µg/L), and A. hydrophila + Cc/Pg-AgNPs (75 µg/L). Changes in different bio-indicators such as hematological, histological, oxidative stress, and cytokine analysis were observed. Interestingly, the infected fish treated with both types of AgNPs (Cc-AgNPs and Pg-AgNPs) exhibited a higher survival rate than the untreated infected fish and demonstrated signs of recovery from the infection, providing a compelling indication of the positive impact of phytosynthesized AgNPs. Disruptions in hematological and histological parameters were found in the infected fish. Both Cc-AgNPs and Pg-AgNPs showed recovery on the hematological and histological parameters. Analysis of oxidative stress and cytokine markers also revealed provoking evidence of the positive impact of Cc-AgNPs and Pg-AgNPs treatment against disease progression in the infected fish. The major finding of the study was that the higher concentrations of the nanoparticles (50 µg/L in the case of Cc-AgNPs and 75 µg/L in the case of Pg-AgNPs) were more effective in fighting against disease. In conclusion, our work presents novel insights for the use of green-synthesized AgNPs as economic and innocuous antibacterial candidates in aquaculture.

15.
Biomedicines ; 11(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37626768

RESUMEN

The present study reports the green synthesis of silver nanoparticles from leaves' extract of Mangifera indica (M. indica) and their antibacterial efficacy against Aeromonas hydrophila (A. hydrophila) in Cirrhinus mrigala (C. mrigala). The prepared M. indica mediated silver nanoparticles (Mi-AgNPs) were found to be polycrystalline in nature, spherical in shapes with average size of 62 ± 13 nm. C. mrigala (n = ±15/group) were divided into six groups i.e., G1: control, G2: A. hydrophila challenged, G3: A. hydrophila challenged + Mi-AgNPs (0.01 mg/L), G4: A. hydrophila challenged + Mi-AgNPs (0.05 mg/L), G5: A. hydrophila challenged + Mi-AgNPs (0.1 mg/L) and G6: A. hydrophila challenged + M. indica extract (0.1 mg/L). Serum biochemical, hematological, histological and oxidative biomarkers were evaluated after 15 days of treatment. The liver enzyme activities, serum proteins, hematological parameters and oxidative stress markers were found to be altered in the challenged fish but showed retrieval effects with Mi-AgNPs treatment. The histological analysis of liver, gills and kidney of the challenged fish also showed regaining effects following Mi-AgNPs treatment. A CFU assay from muscle tissue provided quantitative data that Mi-AgNPs can hinder the bacterial proliferation in challenged fish. The findings of this work suggest that M. indica based silver nanoparticles can be promising candidates for the control and treatment of microbial infections in aquaculture.

16.
R Soc Open Sci ; 10(6): 221272, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37325589

RESUMEN

Long-standing research efforts have enabled the widespread introduction of organic field-effect transistors (OFETs) in next-generation technologies. Concurrently, environmental and operational stability is the major bottleneck in commercializing OFETs. The underpinning mechanism behind these instabilities is still elusive. Here we demonstrate the effect of ambient air on the performance of p-type polymer field-effect transistors. After exposure to ambient air, the device showed significant variations in performance parameters for around 30 days, and then relatively stable behaviour was observed. Two competing mechanisms influencing environmental stability are the diffusion of moisture and oxygen in the metal-organic interface and the active organic layer of the OFET. We measured the time-dependent contact and channel resistances to probe which mechanism is dominant. We found that the dominant role in the degradation of the device stability is the channel resistance rather than the contact resistance. Through time-dependent Fourier transform infrared (FTIR) analysis, we systematically prove that moisture and oxygen cause performance variation in OFETs. FTIR spectra revealed that water and oxygen interact with the polymer chain and perturb its conjugation, thus resulting in degraded performance of the device upon prolonged exposure to ambient air. Our results are important in addressing the environmental instability of organic devices.

17.
ACS Omega ; 8(39): 36321-36332, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810674

RESUMEN

This work is aimed at investigating the viability of utilizing cadmium sulfide (CdS) as a buffer layer in CdTe solar cells by analyzing and assessing its optical, photoluminescence, morphological, and electrical properties. These films were fabricated using a thermal coating technique. Optical microscopy was used to observe the changes in morphology resulting from the doping of rare-earth metals such as samarium (Sm) and lanthanum (La) to CdS, while the granular-like structure of the sample was confirmed by scanning electron microscopy. The objective of incorporating Sm and La ions into CdS was to enhance photoconductivity and optimize the optical bandgap, aiming to create a viable charge transport material for photovoltaic devices with enhanced efficiency. Through that process, a noticeable decrease in transmission, from approximately 80 to 68% in the visible region, was observed. Additionally, the bandgap value was reduced from 2.43 to 2.27 eV. Furthermore, during the analysis of the photoluminescence spectra, it was observed that emission peaks occurred in the visible region. These emissions were attributed to electronic transitions that took place via band-to-band and band-to-impurity interactions. The electrical measurements showed an enhancement in conductivity due to the decrease in the bandgap. This notable consequence of the doped materials suggests their utilization in photovoltaic systems.

18.
Nanotechnology ; 23(30): 305601, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22751156

RESUMEN

Multiphase core-shell nanowires have been fabricated by controlling the ion transport processes of the microfluids in the nanochannels of the template. Both forced convection and pulsed potential induced migration can be applied to tune the morphologies of the nanostructures obtained by manipulating the ion transport during electrodeposition. The morphology and content of the core-shell structure were studied by field emission scanning electron microscope (FESEM) analysis, transmission electron microscope (TEM) analysis and energy dispersive spectrometry (EDS), respectively. The magnetic properties were analyzed by vibrating sample magnetometer (VSM) analysis. A magnetically hard core and soft shell constitutes the multiphase composite nanostructure. The unique magnetic hysteresis curve indicates the decoupled magnetic reversal processes of the two components. Our work provides deeper insights into the formation mechanisms of a new core-shell nanostructure, which may have potential applications in novel spintronics devices.

19.
J Mech Behav Biomed Mater ; 126: 105016, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34871959

RESUMEN

The effect of neodymium (Nd+3) on ZnO thin films has been studied with varying Nd doping percentage ranging from 1 to 5 wt%. XRD graphs confirmed that Nd ions have incorporated into the ZnO lattice without any structural modification. The increase of crystallite size was observed to vary from 27.5 to 31.90 nm with the increment in Nd amount. The optical spectra exhibited transparency in the visible region. The higher transmission was possessed at 1 wt at% Nd concentration. The band gap of Nd-doped ZnO thin films showed variation with the increase in Nd dopant concentration. The increment in dielectric constant and tangent loss was observed with the increase in Nd doping. The change in DC conductivity with frequency was measured by using Jonscher's power law while AC conductivity was explained with the hopping-barrier mechanism. The effects of Nd concentration on antibacterial efficiency against four different bacterial strains Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Klebsiella Pneumonia (K. Pneumonia), and Staphylococcus aureus (S. aureus) were investigated whereas antifungal activity of Nd-ZnO was done against Aspergillus fumigate by using agar disc-diffusion method. ZnO with 4 wt % Nd demonstrated the best photo-catalytic property.


Asunto(s)
Nanoestructuras , Óxido de Zinc , Antibacterianos/farmacología , Escherichia coli , Staphylococcus aureus
20.
Front Microbiol ; 13: 754292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308392

RESUMEN

Tomato plants are prone to various biotic and abiotic stresses. Fusarium wilt is one of the most devasting diseases of tomatoes caused by Fusarium oxysporum f. sp. lycopersici, causing high yield and economic losses annually. Magnetite nanoparticles (Fe3O4 NPs) are one of the potent candidates to inhibit fungal infection by improving plant growth parameters. Spinach has been used as a starting material to synthesize green-synthesized iron oxide nanoparticles (IONPs). Various extracts, i.e., pomegranate juice, white vinegar, pomegranate peel, black coffee (BC), aloe vera peel, and aspirin, had been used as reducing/stabilizing agents to tune the properties of the Fe3O4 NPs. After utilizing spinach as a precursor and BC as a reducing agent, the X-ray diffraction (XRD) pattern showed cubic magnetite (Fe3O4) phase. Spherical-shaped nanoparticles (∼20 nm) with superparamagnetic nature indicated by scanning electron microscopy (SEM) monographs, whereas energy-dispersive X-ray gives good elemental composition in Fe3O4 NPs. A characteristic band of Fe-O at ∼ 561 cm-1 was exhibited by the Fourier transform infrared (FTIR) spectrum. X-ray photoelectron spectroscopy (XPS) results confirmed the binding energies of Fe 2p3/2 (∼710.9 eV) and Fe 2p1/2 (∼724.5 eV) while, Raman bands at ∼310 cm-1 (T2 g ), ∼550 cm-1 (T2 g ), and 670 cm-1 (A1 g ) indicated the formation of Fe3O4 NPs synthesized using BC extract. The in vitro activity of BC-Fe3O4 NPs significantly inhibited the mycelial growth of F. oxysporum both at the third and seventh day after incubation, in a dose-dependent manner. In vivo studies also exhibited a substantial reduction in disease severity and incidence by improving plant growth parameters after treatment with different concentrations of BC-Fe3O4 NPs. The increasing tendency in enzymatic activities had been measured after treatment with different concentrations of NPs both in roots and shoot of tomato plants as compared to the control. Correspondingly, the upregulation of PR-proteins and defense genes are in line with the results of the enzymatic activities. The outcome of the present findings suggests that Fe3O4 NPs has the potential to control wilt infection by enhancing plant growth. Hence, Fe3O4 NPs, being non-phytotoxic, have impending scope in the agriculture sector to attain higher yield by managing plant diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA