Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 33(7): 1187-202, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24748527

RESUMEN

KEY MESSAGE: We show that DCN1 binds ubiquitin and RUB/NEDD8, associates with cullin, and is functionally conserved. DCN1 activity is required for pollen development transitions and embryogenesis, and for pollen tube growth. Plant proteomes show remarkable plasticity in reaction to environmental challenges and during developmental transitions. Some of this adaptability comes from ubiquitin-mediated protein degradation regulated by cullin-RING E3 ubiquitin ligases (CRLs). CRLs are activated through modification of the cullin subunit with the ubiquitin-like protein RUB/NEDD8 by an E3 ligase called defective in cullin neddylation 1 (DCN1). Here we show that tobacco DCN1 binds ubiquitin and RUB/NEDD8 and associates with cullin. When knocked down by RNAi, tobacco pollen formation was affected and zygotic embryogenesis was blocked around the globular stage. Additionally, we found that RNAi of DCN1 inhibited the stress-triggered reprogramming of cultured microspores from their intrinsic gametophytic mode of development to an embryogenic state. This stress-induced developmental switch is a known feature in many important crops and leads ultimately to the formation of haploid embryos and plants. Compensating the RNAi effect by re-transformation with a promoter-silencing construct restored pollen development and zygotic embryogenesis, as well as the ability for stress-induced formation of embryogenic microspores. Overexpression of DCN1 accelerated pollen tube growth and increased the potential for microspore reprogramming. These results demonstrate that the biochemical function of DCN1 is conserved in plants and that its activity is involved in transitions during pollen development and embryogenesis, and for pollen tube growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Semillas/genética , Secuencia de Aminoácidos , Proteínas de Caenorhabditis elegans/genética , Proteínas Cullin/metabolismo , Datos de Secuencia Molecular , Proteína NEDD8 , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Interferencia de ARN , Homología de Secuencia de Aminoácido , Nicotiana/crecimiento & desarrollo , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
2.
Foods ; 10(2)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669278

RESUMEN

It is difficult to trace and identify genome-edited food and feed products if relevant information is not made available to competent authorities. This results in major challenges, as genetically modified organism (GMO) regulatory frameworks for food and feed that apply to countries such as the member states of the European Union (EU) require enforcement based on detection. An international anticipatory detection and identification framework for voluntary collaboration and collation of disclosed information on genome-edited plants could be a valuable tool to address these challenges caused by data gaps. Scrutinizing different information sources and establishing a level of information that is sufficient to unambiguously conclude on the application of genome editing in the plant breeding process can support the identification of genome-edited products by complementing the results of analytical detection. International coordination to set up an appropriate state-of-the-art database is recommended to overcome the difficulty caused by the non-harmonized bio-safety regulation requirements of genome-edited food and feed products in various countries. This approach helps to avoid trade disruptions and to facilitate GMO/non-GMO labeling schemes. Implementation of the legal requirements for genome-edited food and feed products in the EU and elsewhere would substantially benefit from such an anticipatory framework.

3.
Plant Biotechnol J ; 5(4): 483-94, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17470055

RESUMEN

Reversible male sterility and doubled haploid plant production are two valuable technologies in F(1)-hybrid breeding. F(1)-hybrids combine uniformity with high yield and improved agronomic traits, and provide self-acting intellectual property protection. We have developed an F(1)-hybrid seed technology based on the metabolic engineering of glutamine in developing tobacco anthers and pollen. Cytosolic glutamine synthetase (GS1) was inactivated in tobacco by introducing mutated tobacco GS genes fused to the tapetum-specific TA29 and microspore-specific NTM19 promoters. Pollen in primary transformants aborted close to the first pollen mitosis, resulting in male sterility. A non-segregating population of homozygous doubled haploid male-sterile plants was generated through microspore embryogenesis. Fertility restoration was achieved by spraying plants with glutamine, or by pollination with pollen matured in vitro in glutamine-containing medium. The combination of reversible male sterility with doubled haploid production results in an innovative environmentally friendly breeding technology. Tapetum-mediated sporophytic male sterility is of use in foliage crops, whereas microspore-specific gametophytic male sterility can be applied to any field crop. Both types of sterility preclude the release of transgenic pollen into the environment.


Asunto(s)
Citoplasma/enzimología , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Haploidia , Nicotiana/fisiología , Polen/enzimología , Homocigoto , Nicotiana/embriología , Nicotiana/enzimología , Nicotiana/genética
4.
Planta ; 225(5): 1313-24, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17106685

RESUMEN

Proline dehydrogenase is the rate-limiting enzyme in proline degradation and serves important functions in the stress responses and development of plants. We isolated two tobacco proline dehydrogenases, NtPDH1 and NtPDH2, in the course of screening for genes upregulated in stressed tobacco (Nicotiana tabacum) microspores. Expression analysis revealed that the two genes are differentially regulated. Under unstressed conditions, their steady-state transcript levels were similar in mature pollen and apical meristems, whereas NtPDH2 was expressed predominantly in vegetative organs, styles, and ovules. The expression of NtPDH1 was maintained at a constant low level during 24 h of dehydration, whereas NtPDH2 was upregulated within 1 h after the onset of stress and subsequently downregulated to undetectable levels. Differential and sustained expression was also found for the two enzymatic isoforms of Arabidopsis thaliana AtPDH. Silencing of the NtPDH genes by RNA interference using the CaMV 35S promoter led to increased proline contents, decreased seed set, delayed seed germination and retarded seedling development pointing towards an important function of at least one of the two NtPDH genes during plant reproductive development.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Nicotiana/genética , Prolina Oxidasa/genética , Secuencia de Aminoácidos , Secuencia Conservada , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , ADN de Plantas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Interferencia de ARN , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Nicotiana/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA