Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 222(Pt 5)2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30679244

RESUMEN

Animals use diverse feeding strategies to capture and consume prey, with many species switching between strategies to accommodate different prey. Many marine animals exhibit behavioral flexibility when feeding to deal with spatial and temporal heterogeneity in prey resources. However, little is known about flexibility in the feeding behavior of many large marine predators. Here, we documented the feeding behavior and kinematics of the endangered Hawaiian monk seal (Neomonachus schauinslandi, n=7) through controlled feeding trials. Seals were fed multiple prey types (e.g. night smelt, capelin, squid and herring) that varied in size and shape to examine behavioral flexibility in feeding. Hawaiian monk seals primarily used suction feeding (91% of all feeding trials) across all prey types, but biting, specifically pierce feeding, was also observed (9% of all feeding trials). Suction feeding was characterized by shorter temporal events, a smaller maximum gape and gape angle, and a fewer number of jaw motions than pierce feeding; suction feeding kinematic performance was also more variable compared with pierce feeding. Seals showed behavioral flexibility in their use of the two strategies. Suction feeding was used most frequently when targeting small to medium sized prey and biting was used with increasing frequency on larger prey. The feeding kinematics differed between feeding strategies and prey types, showing that Hawaiian monk seals adjusted their behaviors to particular feeding contexts. Hawaiian monk seals are opportunistic marine predators and their ability to adapt their feeding strategy and behavior to specific foraging scenarios allows them to target diverse prey resources.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Phocidae/fisiología , Animales , Tamaño Corporal , Peces/fisiología , Hawaii , Phocidae/psicología
2.
J Exp Biol ; 220(Pt 6): 1135-1145, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28298467

RESUMEN

Exponential increases in hydrodynamic drag and physical exertion occur when swimmers move quickly through water, and underlie the preference for relatively slow routine speeds by marine mammals regardless of body size. Because of this and the need to balance limited oxygen stores when submerged, flight (escape) responses may be especially challenging for this group. To examine this, we used open-flow respirometry to measure the energetic cost of producing a swimming stroke during different levels of exercise in bottlenose dolphins (Tursiops truncatus). These data were then used to model the energetic cost of high-speed escape responses by other odontocetes ranging in mass from 42 to 2738 kg. The total cost per stroke during routine swimming by dolphins, 3.31±0.20 J kg-1 stroke-1, was doubled during maximal aerobic performance. A comparative analysis of locomotor costs (LC; in J kg-1 stroke-1), representing the cost of moving the flukes, revealed that LC during routine swimming increased with body mass (M) for odontocetes according to LC=1.46±0.0005M; a separate relationship described LC during high-speed stroking. Using these relationships, we found that continuous stroking coupled with reduced glide time in response to oceanic noise resulted in a 30.5% increase in metabolic rate in the beaked whale, a deep-diving odontocete considered especially sensitive to disturbance. By integrating energetics with swimming behavior and dive characteristics, this study demonstrates the physiological consequences of oceanic noise on diving mammals, and provides a powerful tool for predicting the biological significance of escape responses by cetaceans facing anthropogenic disturbances.


Asunto(s)
Delfín Mular/fisiología , Buceo , Metabolismo Energético , Natación , Orca/fisiología , Animales , Femenino , Masculino , Oxígeno/metabolismo , Consumo de Oxígeno , Condicionamiento Físico Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA