Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant J ; 108(4): 1162-1173, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34559918

RESUMEN

Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Zinc/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Estrés Fisiológico
2.
Biochem Biophys Res Commun ; 560: 7-13, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33964505

RESUMEN

Zinc and iron are essential micronutrients for plant growth, and their homeostasis must be tightly regulated. Previously, it has been shown that Zinc-Induced Facilitator 1 (ZIF1) is involved in basal Zn tolerance by controlling the vacuolar storage of nicotianamine (NA). However, knowledge of the functional roles of two ZIF1 paralogs, ZIF-LIKE1 (ZIFL1) and ZIFL2, in metal homeostasis remains limited. Here, we functionally characterized the roles of ZIF1, ZIFL1, and ZIFL2 in Zn and Fe homeostasis. Expression of ZIF1 and ZIFL1 was induced by both excess Zn and Fe-deficiency, and their loss-of-function led to hypersensitivity under excess Zn and Fe-deficiency, suggesting functional overlap between ZIF1 and ZIFL1. By contrast, the disruption of ZIFL2 resulted in no obvious phenotypic alteration under both conditions. Additionally, the expression of ZIFL1, but not that of ZIFL2, in the zif1 mutant partially restored the phenotype under excess Zn, suggesting that ZIF1 and ZIFL1 perform functionally redundant roles in Zn homeostasis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas de Transporte de Catión/fisiología , Hierro/metabolismo , Zinc/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Transporte de Catión/genética , Homeostasis , Hierro/fisiología , Hierro/toxicidad , Mutación , Fenotipo , Plantones/metabolismo , Estrés Fisiológico/genética , Zinc/toxicidad
4.
Plant J ; 76(4): 627-33, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24033783

RESUMEN

Oxalate-producing plants accumulate calcium oxalate crystals (CaOx(c)) in the range of 3-80% w/w of their dry weight, reducing calcium (Ca) bioavailability. The calcium oxalate deficient 5 (cod5) mutant of Medicago truncatula has been previously shown to contain similar Ca concentrations to wild-type (WT) plants, but lower oxalate and CaOx(c) concentrations. We imaged the Ca distribution in WT and cod5 leaflets via synchrotron X-ray fluorescence mapping (SXRF). We observed a difference in the Ca distribution between cod5 and WT leaflets, manifested as an abundance of Ca in the interveinal areas and a lack of Ca along the secondary veins in cod5, i.e. the opposite of what is observed in WT. X-ray microdiffraction (µXRD) of M. truncatula leaves confirmed that crystalline CaOx(c) (whewellite; CaC2 O4 · H2 O) was present in the WT only, in cells sheathing the secondary veins. Together with µXRD, microbeam Ca K-edge X-ray absorption near-edge structure spectroscopy (µXANES) indicated that, among the forms of CaOx, i.e. crystalline or amorphous, only amorphous CaOx was present in cod5. These results demonstrate that deletion of COD5 changes both Ca localization and the form of CaOx within leaflets.


Asunto(s)
Calcio/metabolismo , Medicago truncatula/metabolismo , Hojas de la Planta/metabolismo , Calcio/química , Medicago truncatula/genética , Oxalatos/metabolismo , Fenotipo , Hojas de la Planta/química , Hojas de la Planta/genética , Eliminación de Secuencia , Sincrotrones , Espectroscopía de Absorción de Rayos X , Difracción de Rayos X
5.
Front Plant Sci ; 13: 944624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420033

RESUMEN

Iron (Fe) and zinc (Zn) are essential micronutrients needed by virtually all living organisms, including plants and humans, for proper growth and development. Due to its capacity to easily exchange electrons, Fe is important for electron transport in mitochondria and chloroplasts. Fe is also necessary for chlorophyll synthesis. Zn is a cofactor for several proteins, including Zn-finger transcription factors and redox metabolism enzymes such as copper/Zn superoxide dismutases. In humans, Fe participates in oxygen transport, electron transport, and cell division whereas Zn is involved in nucleic acid metabolism, apoptosis, immunity, and reproduction. Rice (Oryza sativa L.) is one of the major staple food crops, feeding over half of the world's population. However, Fe and Zn concentrations are low in rice grains, especially in the endosperm, which is consumed as white rice. Populations relying heavily on rice and other cereals are prone to Fe and Zn deficiency. One of the most cost-effective solutions to this problem is biofortification, which increases the nutritional value of crops, mainly in their edible organs, without yield reductions. In recent years, several approaches were applied to enhance the accumulation of Fe and Zn in rice seeds, especially in the endosperm. Here, we summarize these attempts involving transgenics and mutant lines, which resulted in Fe and/or Zn biofortification in rice grains. We review rice plant manipulations using ferritin genes, metal transporters, changes in the nicotianamine/phytosiderophore pathway (including biosynthetic genes and transporters), regulators of Fe deficiency responses, and other mutants/overexpressing lines used in gene characterization that resulted in Fe/Zn concentration changes in seeds. This review also discusses research gaps and proposes possible future directions that could be important to increase the concentration and bioavailability of Fe and Zn in rice seeds without the accumulation of deleterious elements. We also emphasize the need for a better understanding of metal homeostasis in rice, the importance of evaluating yield components of plants containing transgenes/mutations under field conditions, and the potential of identifying genes that can be manipulated by gene editing and other nontransgenic approaches.

6.
BMC Plant Biol ; 11: 20, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21266036

RESUMEN

BACKGROUND: Duplications are very common in the evolution of plant genomes, explaining the high number of members in plant gene families. New genes born after duplication can undergo pseudogenization, neofunctionalization or subfunctionalization. Rice is a model for functional genomics research, an important crop for human nutrition and a target for biofortification. Increased zinc and iron content in the rice grain could be achieved by manipulation of metal transporters. Here, we describe the ZINC-INDUCED FACILITATOR-LIKE (ZIFL) gene family in plants, and characterize the genomic structure and expression of rice paralogs, which are highly affected by segmental duplication. RESULTS: Sequences of sixty-eight ZIFL genes, from nine plant species, were comparatively analyzed. Although related to MSF_1 proteins, ZIFL protein sequences consistently grouped separately. Specific ZIFL sequence signatures were identified. Monocots harbor a larger number of ZIFL genes in their genomes than dicots, probably a result of a lineage-specific expansion. The rice ZIFL paralogs were named OsZIFL1 to OsZIFL13 and characterized. The genomic organization of the rice ZIFL genes seems to be highly influenced by segmental and tandem duplications and concerted evolution, as rice genome contains five highly similar ZIFL gene pairs. Most rice ZIFL promoters are enriched for the core sequence of the Fe-deficiency-related box IDE1. Gene expression analyses of different plant organs, growth stages and treatments, both from our qPCR data and from microarray databases, revealed that the duplicated ZIFL gene pairs are mostly co-expressed. Transcripts of OsZIFL4, OsZIFL5, OsZIFL7, and OsZIFL12 accumulate in response to Zn-excess and Fe-deficiency in roots, two stresses with partially overlapping responses. CONCLUSIONS: We suggest that ZIFL genes have different evolutionary histories in monocot and dicot lineages. In rice, concerted evolution affected ZIFL duplicated genes, possibly maintaining similar expression patterns between pairs. The enrichment for IDE1 boxes in rice ZIFL gene promoters suggests a role in Zn-excess and Fe-deficiency up-regulation of ZIFL transcripts. Moreover, this is the first description of the ZIFL gene family in plants and the basis for functional studies on this family, which may play important roles in Zn and Fe homeostasis in plants.


Asunto(s)
Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Duplicados/genética , Genes de Plantas/genética , Deficiencias de Hierro , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Oryza/efectos de los fármacos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Zinc/farmacología
7.
Sci Rep ; 11(1): 5278, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674630

RESUMEN

Zinc (Zn) is a key micronutrient for plants and animals, and understanding Zn homeostasis in plants can improve both agriculture and human health. While root Zn transporters in plant model species have been characterized in detail, comparatively little is known about shoot processes controlling Zn concentrations and spatial distribution. Previous work showed that Zn hyperaccumulator species such as Arabidopsis halleri accumulate Zn and other metals in leaf trichomes. To date there is no systematic study regarding Zn accumulation in the trichomes of the non-accumulating, genetic model species A. thaliana. Here, we used Synchrotron X-Ray Fluorescence mapping to show that Zn accumulates at the base of trichomes of A. thaliana. Using transgenic and natural accessions of A thaliana that vary in bulk leaf Zn concentration, we demonstrate that higher leaf Zn increases total Zn found at the base of trichome cells. Our data indicates that Zn accumulation in trichomes is a function of the Zn status of the plant, and provides the basis for future studies on a genetically tractable plant species to understand the molecular steps involved in Zn spatial distribution in leaves.


Asunto(s)
Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Transducción de Señal/genética , Tricomas/metabolismo , Zinc/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Homeostasis/genética , Oryza/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Espectrometría por Rayos X/métodos , Sincrotrones
8.
Front Psychol ; 12: 663252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054667

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is altering dynamics in academia, and people juggling remote work and domestic demands - including childcare - have felt impacts on their productivity. Female authors have faced a decrease in paper submission rates since the beginning of the pandemic period. The reasons for this decline in women's productivity need to be further investigated. Here, we analyzed the influence of gender, parenthood and race on academic productivity during the pandemic period based on a survey answered by 3,345 Brazilian academics from various knowledge areas and research institutions. Productivity was assessed by the ability to submit papers as planned and to meet deadlines during the initial period of social isolation in Brazil. The findings revealed that male academics - especially those without children - are the least affected group, whereas Black women and mothers are the most impacted groups. These impacts are likely a consequence of the well-known unequal division of domestic labor between men and women, which has been exacerbated during the pandemic. Additionally, our results highlight that racism strongly persists in academia, especially against Black women. The pandemic will have long-term effects on the career progression of the most affected groups. The results presented here are crucial for the development of actions and policies that aim to avoid further deepening the gender gap in academia.

9.
BMC Mol Biol ; 11: 73, 2010 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-20854682

RESUMEN

BACKGROUND: Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. RESULTS: By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs identified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. CONCLUSION: Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression profile obtained using the genes suggested by the algorithms, H2B and TUA were considered as the most suitable reference genes for expression studies in E. globulus adventitious rooting. UBI and 18S were unsuitable for use as controls in qPCR related to this process. These findings will enable more accurate and reliable normalization of qPCR results for gene expression studies in this economically important woody plant, particularly related to rooting and clonal propagation.


Asunto(s)
Eucalyptus , Genes de Plantas , Raíces de Plantas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Algoritmos , Eucalyptus/anatomía & histología , Eucalyptus/genética , Eucalyptus/fisiología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Estándares de Referencia , Programas Informáticos , Transcripción Genética
10.
Planta ; 230(5): 985-1002, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19697058

RESUMEN

Rice is a poor source of micronutrients such as iron and zinc. To help clarify the molecular mechanisms that regulate metal mobilization from leaves to developing seeds, we conducted suppression subtractive hybridization analysis in flag leaves of two rice cultivars. Flag leaves are the major source of remobilized metals for developing seeds. We isolated 78 sequences up-regulated in flag leaves at the grain filling stage relative to the panicle exertion stage. Differential expression of selected genes (encoding 7 transport proteins, the OsNAS3 enzyme and the OsNAC5 transcription factor) was confirmed by quantitative RT-PCR. We show that OsNAC5 expression is up-regulated by natural (aging) and induced senescence processes (dark, ABA application, high salinity, cold and Fe-deficiency) and its expression is not affected in the presence of 6-benzylaminopurine (a senescence inhibitor) under dark-induced senescence. Salt induction of OsNAC5 expression is abolished by nicotinamide, an inhibitor of ABA effects. This result and the presence of cis-acting elements in the promoter region of the OsNAC5 gene suggest an ABA-dependent regulation. Using four different rice cultivars, we show that OsNAC5 up-regulation is higher and earlier in flag leaves and panicles of IR75862 plants, which have higher seed concentrations of Fe, Zn and protein. We suggest that OsNAC5 is a novel senescence-associated ABA-dependent NAC transcription factor and its function could be related to Fe, Zn and amino acids remobilization from green tissues to seeds.


Asunto(s)
Ácido Abscísico/farmacología , Oryza/genética , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética , Secuencia de Aminoácidos , Senescencia Celular/efectos de los fármacos , ADN Complementario/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Biblioteca de Genes , Deficiencias de Hierro , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Especificidad de Órganos/genética , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Alineación de Secuencia , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/química , Regulación hacia Arriba/efectos de los fármacos , Zinc/metabolismo
11.
Sci Rep ; 9(1): 19482, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862901

RESUMEN

In roots of Arabidopsis thaliana, Zn can be either loaded into the xylem for translocation to the shoot or stored in vacuoles. Vacuolar storage is achieved through the action of the Zn/Cd transporter HMA3 (Heavy Metal Atpase 3). The Col-0 accession has an HMA3 loss-of-function allele resulting in high shoot Cd, when compared to accession CSHL-5 which has a functional allele and low shoot Cd. Interestingly, both Col-0 and CSHL-5 have similar shoot Zn concentrations. We hypothesize that plants sense changes in cytosolic Zn that are due to variation in HMA3 function, and respond by altering expression of genes related to Zn uptake, transport and compartmentalisation, in order to maintain Zn homeostasis. The expression level of genes known to be involved in Zn homeostasis were quantified in both wild-type Col-0 and Col-0::HMA3CSHL-5 plants transformed with the functional CSHL-5 allele of HMA3. We observed significant positive correlations between expression of HMA3 and of genes known to be involved in Zn homeostasis, including ZIP3, ZIP4, MTP1, and bZIP19. The results support our hypothesis that alteration in the level of function of HMA3 is counterbalanced by the fine regulation of the Zn homeostasis gene network in roots of A. thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Variación Genética/genética , Variación Genética/fisiología , Zinc/metabolismo
12.
Front Plant Sci ; 9: 412, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29666628

RESUMEN

Plant nutrient uptake is performed mostly by roots, which have to acquire nutrients while avoiding excessive amounts of essential and toxic elements. Apoplastic barriers such as the casparian strip and suberin deposition block free diffusion from the rhizosphere into the xylem, making selective plasma membrane transporters able to control elemental influx into the root symplast, efflux into the xylem and therefore shoot translocation. Additionally, transporters localized to the tonoplast of root cells have been demonstrated to regulate the shoot ionome, and may be important for seed elemental translocation. Here we review the role of vacuolar transporters in the detoxification of elements such as zinc (Zn), manganese (Mn), cadmium (Cd), cobalt (Co) and nickel (Ni) that are co-transported with iron (Fe) during the Fe deficiency response in Arabidopsis thaliana, and the possible conservation of this mechanism in rice (Oryza sativa). We also discuss the evidence that vacuolar transporters are linked to natural variation in shoot ionome in Arabidopsis and rice, indicating that vacuolar storage might be amenable to genetic engineering without strong phenotypical changes. Finally, we discuss the possible use of root's vacuolar transporters to increase the nutritional quality of crop grains.

13.
Front Plant Sci ; 9: 865, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018622

RESUMEN

Iron (Fe) and zinc (Zn) are essential micronutrients required for proper development in both humans and plants. Rice (Oryza sativa L.) grains are the staple food for nearly half of the world's population, but a poor source of metals such as Fe and Zn. Populations that rely on milled cereals are especially prone to Fe and Zn deficiencies, the most prevalent nutritional deficiencies in humans. Biofortification is a cost-effective solution for improvement of the nutritional quality of crops. However, a better understanding of the mechanisms underlying grain accumulation of mineral nutrients is required before this approach can achieve its full potential. Characterization of gene function is more time-consuming in crops than in model species such as Arabidopsis thaliana. Aiming to more quickly characterize rice genes related to metal homeostasis, we applied the concept of high throughput elemental profiling (ionomics) to Arabidopsis lines heterologously expressing rice cDNAs driven by the 35S promoter, named FOX (Full Length Over-eXpressor) lines. We screened lines expressing candidate genes that could be used in the development of biofortified grain. Among the most promising candidates, we identified two lines ovexpressing the metal cation transporter OsZIP7. OsZIP7 expression in Arabidopsis resulted in a 25% increase in shoot Zn concentrations compared to non-transformed plants. We further characterized OsZIP7 and showed that it is localized to the plasma membrane and is able to complement Zn transport defective (but not Fe defective) yeast mutants. Interestingly, we showed that OsZIP7 does not transport Cd, which is commonly transported by ZIP proteins. Importantly, OsZIP7-expressing lines have increased Zn concentrations in their seeds. Our results indicate that OsZIP7 is a good candidate for developing Zn biofortified rice. Moreover, we showed the use of heterologous expression of genes from crops in A. thaliana as a fast method for characterization of crop genes related to the ionome and potentially useful in biofortification strategies.

16.
Plant Sci ; 238: 1-12, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26259169

RESUMEN

Rice productivity is largely affected by low temperature, which can be harmful throughout plant development, from germination to grain filling. Germination of indica rice cultivars under cold is slow and not uniform, resulting in irregular emergence and small plant population. To identify and characterize novel genes involved in cold tolerance during the germination stage, two indica rice genotypes (sister lines previously identified as cold-tolerant and cold-sensitive) were used in parallel transcriptomic analysis (RNAseq) under cold treatment (seeds germinating at 13 °C for 7 days). We detected 1,361 differentially expressed transcripts. Differences in gene expression found by RNAseq were confirmed for 11 selected genes using RT-qPCR. Biological processes enhanced in the cold-tolerant seedlings include: cell division and expansion (confirmed by anatomical sections of germinating seeds), cell wall integrity and extensibility, water uptake and membrane transport capacity, sucrose synthesis, generation of simple sugars, unsaturation of membrane fatty acids, wax biosynthesis, antioxidant capacity (confirmed by histochemical staining of H2O2), and hormone and Ca(2+)-signaling. The cold-sensitive seedlings respond to low temperature stress increasing synthesis of HSPs and dehydrins, along with enhanced ubiquitin/proteasome protein degradation pathway and polyamine biosynthesis. Our findings can be useful in future biotechnological approaches aiming to cold tolerance in indica rice.


Asunto(s)
Adaptación Fisiológica/genética , Frío , Germinación/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/genética , Oryza/fisiología , Semillas/genética , Análisis de Secuencia de ARN , División Celular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Ontología de Genes , Genotipo , Peróxido de Hidrógeno/metabolismo , Oryza/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Plantones/citología , Plantones/genética , Transcriptoma/genética
17.
Metallomics ; 6(8): 1427-40, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24760325

RESUMEN

Cadmium (Cd) is a non-essential heavy metal, which is classified as a "known human carcinogen" by the International Agency for Research on Cancer (IARC). Understanding the mechanisms controlling Cd distribution in planta is essential to develop phytoremediation approaches as well as for food safety. Unlike most other plants, tobacco (Nicotiana tabacum) plants translocate most of the Cd taken up from the soil, out of the roots and into the shoots, leading to high Cd accumulation in tobacco shoots. Two orthologs of the Arabidopsis thaliana HMA2 and HMA4 Zn and Cd ATPases that are responsible for zinc (Zn) and Cd translocation from roots to shoots were identified in tobacco and sequenced. These genes, named NtHMAα and NtHMAß, were more highly expressed in roots than in shoots. NtHMAα was expressed in the vascular tissues of both roots and leaves as well as in anthers. No visual difference was observed between wild-type plants and plants in which the NtHMAα and NtHMAß genes were either mutated or silenced. These mutants showed reduced Zn and Cd accumulation in shoots as well as increased Cd tolerance. When both NtHMA genes were silenced, plant development was altered and pollen germination was severely impaired due to Zn deficiency. Interestingly, seeds from these lines also showed decreased Zn concentration but increased iron (Fe) concentration.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Arabidopsis/metabolismo , Cadmio/metabolismo , Metales Pesados/metabolismo , Nicotiana/metabolismo , Zinc/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/fisiología , Hojas de la Planta/metabolismo , Brotes de la Planta/metabolismo , Polen/metabolismo
20.
Front Plant Sci ; 4: 144, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717323

RESUMEN

Zinc (Zn) is an essential micronutrient for plants, playing catalytic or structural roles in enzymes, transcription factors, ribosomes, and membranes. In humans, Zn deficiency is the second most common mineral nutritional disorder, affecting around 30% of the world's population. People living in poverty usually have diets based on milled cereals, which contain low Zn concentrations. Biofortification of crops is an attractive cost-effective solution for low mineral dietary intake. In order to increase the amounts of bioavailable Zn in crop edible portions, it is necessary to understand how plants take up, distribute, and store Zn within their tissues, as well as to characterize potential candidate genes for biotechnological manipulation. The metal tolerance proteins (MTP) were described as metal efflux transporters from the cytoplasm, transporting mainly Zn(2+) but also Mn(2+), Fe(2+), Cd(2+), Co(2+), and Ni(2+). Substrate specificity appears to be conserved in phylogenetically related proteins. MTPs characterized so far in plants have a role in general Zn homeostasis and tolerance to Zn excess; in tolerance to excess Mn and also in the response to iron (Fe) deficiency. More recently, the first MTPs in crop species have been functionally characterized. In Zn hyperaccumulator plants, the MTP1 protein is related to hypertolerance to elevated Zn concentrations. Here, we review the current knowledge on this protein family, as well as biochemical functions and physiological roles of MTP transporters in Zn hyperaccumulators and non-accumulators. The potential applications of MTP transporters in biofortification efforts are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA