Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vaccine ; 42(6): 1300-1310, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38302336

RESUMEN

DNA- based vaccines have demonstrated the potential as a safe and effective modality. PlaCCine, a DNA-based vaccine approach described subsequently relies on a synthetic DNA delivery system and is independent of virus or device. The synthetic functionalized polymer combined with DNA demonstrated stability over 12 months at 4C and for one month at 25C. Transfection efficiency compared to naked DNA increased by 5-15-fold in murine skeletal muscle. Studies of DNA vaccines expressing spike proteins from variants D614G (pVAC15), Delta (pVAC16), or a D614G + Delta combination (pVAC17) were conducted. Mice immunized intramuscular injection (IM) with pVAC15, pVAC16 or pVAC17 formulated with functionalized polymer and adjuvant resulted in induction of spike-specific humoral and cellular responses. Antibody responses were observed after one immunization. And endpoint IgG titers increased to greater than 1x 105 two weeks after the second injection. Neutralizing antibodies as determined by a pseudovirus competition assay were observed following vaccination with pVAC15, pVAC16 or pVAC17. Spike specific T cell immune responses were also observed following vaccination and flow cytometry analysis demonstrated the cellular immune responses included both CD4 and CD8 spike specific T cells. The immune responses in vaccinated mice were maintained for up to 14 months after vaccination. In an immunization and challenge study of K18 hACE2 transgenic mice pVAC15, pVAC16 and pVAC17 induced immune responses lead to decreased lung viral loads by greater than 90 % along with improved clinical score. These findings suggest that PlaCCine DNA vaccines are effective and stable and further development against emerging SARS-CoV-2 variants is warranted.


Asunto(s)
COVID-19 , Vacunas de ADN , Ratones , Animales , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Ratones Transgénicos , Anticuerpos Neutralizantes , ADN , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética , Inmunogenicidad Vacunal
2.
J Gene Med ; 11(8): 718-28, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19507172

RESUMEN

BACKGROUND: The poor prognosis associated with ovarian cancer is primarily the result of delayed diagnosis and the lack of an effective treatment for advanced disease. Use of novel immunotherapy strategies are being evaluated that work to enhance local and systemic immune responses against cancer cells and can possibly work together with traditional cytotoxic chemotherapy regimens to produce more effective treatment options. METHODS: In the present study, we describe a gene-based therapy whereby the anticancer cytokine interleukin-12 gene (pmIL-12) is formulated with a synthetic polymeric delivery vehicle (PPC) and administered intraperitoneally into a mouse model of disseminated ovarian cancer. RESULTS: The administration of pmIL-12/PPC in tumor-bearing mice was associated with a shift towards a Th1 immune state, including significant increases in murine IL-12 (mIL-12) and interferon (IFN)-gamma (mIFN-gamma) in ascites fluid, with little change in systemic levels of these proteins. The mIL-12 protein was detectable for several days and could be reintroduced with subsequent injections. We show that treatment delayed the onset of ascites formation and improved survival in a dose-dependent manner. A significant decrease in vascular endothelial growth factor was associated with pmIL-12/PPC delivery and believed to play a predominant role in inhibiting ascites accumulation. Administration of pmIL-12/PPC was associated with minimal toxicity and, when combined with standard chemotherapies, resulted in additive improvement in survival. CONCLUSIONS: Taken together, these results suggest that pmIL-12/PPC may be an effective strategy for inhibiting progression of disseminated ovarian cancer and may offer a new option for treatment of advanced disease that can be used to complement standard therapies.


Asunto(s)
Terapia Genética , Interleucina-12/genética , Interleucina-12/uso terapéutico , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Animales , Ascitis/metabolismo , Recuento de Células Sanguíneas , Peso Corporal/efectos de los fármacos , Carboplatino/farmacología , Carboplatino/uso terapéutico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inyecciones Intraperitoneales , Interleucina-12/administración & dosificación , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Neoplasias/sangre , Neoplasias Ováricas/sangre , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos , Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA