Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054865

RESUMEN

The prediction of monoclonal antibody (mAb) disposition within solid tumors for individual patients is difficult due to inter-patient variability in tumor physiology. Improved a priori prediction of mAb pharmacokinetics in tumors may facilitate the development of patient-specific dosing protocols and facilitate improved selection of patients for treatment with anti-cancer mAb. Here, we report the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), with tumor penetration of the contrast agent gadobutrol used as a surrogate, to improve physiologically based pharmacokinetic model (PBPK) predictions of cetuximab pharmacokinetics in epidermal growth factor receptor (EGFR) positive xenografts. In the initial investigations, mice bearing Panc-1, NCI-N87, and LS174T xenografts underwent DCE-MRI imaging with the contrast agent gadobutrol, followed by intravenous dosing of an 125Iodine-labeled, non-binding mAb (8C2). Tumor concentrations of 8C2 were determined following the euthanasia of mice (3 h-6 days after 8C2 dosing). Potential predictor relationships between DCE-MRI kinetic parameters and 8C2 PBPK parameters were evaluated through covariate modeling. The addition of the DCE-MRI parameter Ktrans alone or Ktrans in combination with the DCE-MRI parameter Vp on the PBPK parameters for tumor blood flow (QTU) and tumor vasculature permeability (σTUV) led to the most significant improvement in the characterization of 8C2 pharmacokinetics in individual tumors. To test the utility of the DCE-MRI covariates on a priori prediction of the disposition of mAb with high-affinity tumor binding, a second group of tumor-bearing mice underwent DCE-MRI imaging with gadobutrol, followed by the administration of 125Iodine-labeled cetuximab (a high-affinity anti-EGFR mAb). The MRI-PBPK covariate relationships, which were established with the untargeted antibody 8C2, were implemented into the PBPK model with considerations for EGFR expression and cetuximab-EGFR interaction to predict the disposition of cetuximab in individual tumors (a priori). The incorporation of the Ktrans MRI parameter as a covariate on the PBPK parameters QTU and σTUV decreased the PBPK model prediction error for cetuximab tumor pharmacokinetics from 223.71 to 65.02%. DCE-MRI may be a useful clinical tool in improving the prediction of antibody pharmacokinetics in solid tumors. Further studies are warranted to evaluate the utility of the DCE-MRI approach to additional mAbs and additional drug modalities.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Medios de Contraste/química , Imagen por Resonancia Magnética , Neoplasias/inmunología , Animales , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Cetuximab/inmunología , Cetuximab/farmacocinética , Humanos , Masculino , Ratones , Modelos Biológicos , Neoplasias/sangre , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
2.
Int J Toxicol ; 40(3): 270-284, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33631988

RESUMEN

Safety assessment of biological drugs has its challenges due to the multiple new different modalities, for example, antibody-drug conjugates, bispecifics, nanobodies, fusion proteins and advanced therapy medicinal products (ATMPs), their different pharmacokinetic and pharmacodynamic properties, and their ability to trigger immunogenicity and toxicity. In the public and in the pharmaceutical industry, there is a strong and general desire to reduce the number of animals used in research and development of drugs and in particular reducing the use of nonhuman primates. Important discussions and activities are ongoing investigating the smarter designs of early research and dose range finding studies, reuse of animals, and replacing animal experiments with in vitro studies. Other important challenges include absence of a relevant species and design of studies and developing genetically modified animals for special investigative toxicology studies. Then, the learnings and challenges from the development of the first ATMPs are available providing valuable insights in the development path for these new potentially transformative treatments. Finally, development of strategies for assessment of immunogenicity and prediction of translation of immunogenicity and associated findings to the clinic. On this, the eighth meeting for the European BioSafe members, these challenges served as the basis for the presentations and discussions during the meeting. This article serves as the workshop report reviewing the presentations and discussions at the meeting.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Anticuerpos Monoclonales/farmacocinética , Productos Biológicos/farmacocinética , Biomarcadores Farmacológicos , Congresos como Asunto , Evaluación Preclínica de Medicamentos/métodos , Animales , Humanos
3.
Anal Chem ; 91(5): 3475-3483, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30712341

RESUMEN

Sensitive and high-throughput measurement of biotherapeutics and biomarkers in plasma and tissues is critical for protein-drug development. Enrichment of target signature peptide (SP) after sample digestion permits sensitive LC-MS-based protein quantification and carries several prominent advantages over protein-level enrichment; however, developing high-quality antipeptide antibodies is challenging. Here we describe a novel, antibody-free, peptide-level-enrichment technique enabling high-throughput, sensitive, and robust quantification of proteins in biomatrices, by highly selective removal of matrix peptides and components via cation-exchange (CX) reversed-phase (RP) SPE with strategically regulated pH and ionic and organic strengths. Multiple-mechanism washing and elution achieved highly selective separation despite the low plate number of the SPE cartridge. We first investigated the adsorption-desorption behaviors of peptides on CX-RP sorbent and the coexisting, perplexing effects of pH, and ionic and organic strengths on the selectivity for SP enrichment, which has not been previously characterized. We demonstrated that the selectivity for separating target SPs from matrix peptides was closely associated with buffer pH relative to the pI of the SP, and pH values of pI - 2, pI, and pI + 2 respectively provided exceptional specificity for the ionic wash, the hydrophobic wash, and selective elution. Furthermore, desorption of peptides from the mixed-mode sorbent showed exponential and linear dependence, respectively, on organic-solvent percentage and salt percentage. On the basis of these findings, we established a streamlined procedure for rapid and robust method development. Quantification of biotherapeutics, targets, and biomarkers in plasma and tissues was used as the model system. Selective enrichment of target SPs was achieved along with elimination of 87-95% of matrix peptides, which improved the LOQ by 20-fold (e.g., 2 ng per gram of tissue). Application was demonstrated by sensitive quantification of time courses of mAb (T84.66) and target (CEA) in plasma and tumor tissues from a low-dose mouse PK study. For the first time, down-regulation of membrane-associated antigen following mAb treatment was observed. The CX-RP enrichment is robust, high-throughput, and universally applicable and thus is highly valuable for ultrasensitive, large-scale measurement of target protein in plasma and tissues.


Asunto(s)
Anticuerpos Monoclonales/análisis , Ensayos Analíticos de Alto Rendimiento , Péptidos/química , Animales , Anticuerpos Monoclonales/farmacocinética , Biomarcadores/análisis , Cromatografía Liquida , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Ratones , Concentración Osmolar , Solventes/química
4.
Drug Metab Dispos ; 47(12): 1443-1456, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31748266

RESUMEN

For therapeutic proteins, the currently established standard development path generally does not foresee biotransformation studies by default because it is well known that the clearance of therapeutic proteins proceeds via degradation to small peptides and individual amino acids. In contrast to small molecules, there is no general need to identify enzymes involved in biotransformation because this information is not relevant for drug-drug interaction assessment and for understanding the clearance of a therapeutic protein. Nevertheless, there are good reasons to embark on biotransformation studies, especially for complex therapeutic proteins. Typical triggers are unexpected rapid clearance, species differences in clearance not following the typical allometric relationship, a mismatch in the pharmacokinetics/pharmacodynamics (PK/PD) relationship, and the need to understand observed differences between the results of multiple bioanalytical methods (e.g., total vs. target-binding competent antibody concentrations). Early on during compound optimization, knowledge on protein biotransformation may help to design more stable drug candidates with favorable in vivo PK properties. Understanding the biotransformation of a therapeutic protein may also support designing and understanding the bioanalytical assay and ultimately the PK/PD assessment. Especially in cases where biotransformation products are pharmacologically active, quantification and assessment of their contribution to the overall pharmacological effect can be important for establishing a PK/PD relationship and extrapolation to humans. With the increasing number of complex therapeutic protein formats, the need for understanding the biotransformation of therapeutic proteins becomes more urgent. This article provides an overview on biotransformation processes, proteases involved, strategic considerations, regulatory guidelines, literature examples for in vitro and in vivo biotransformation, and technical approaches to study protein biotransformation. SIGNIFICANCE STATEMENT: Understanding the biotransformation of complex therapeutic proteins can be crucial for establishing a pharmacokinetic/pharmacodynamic relationship. This article will highlight scientific, strategic, regulatory, and technological features of protein biotransformation.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Proteínas/farmacocinética , Bibliotecas de Moléculas Pequeñas/farmacocinética , Animales , Biotransformación , Interacciones Farmacológicas , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Proteínas/administración & dosificación , Proteínas/farmacología , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacología
5.
Regul Toxicol Pharmacol ; 94: 91-100, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29355662

RESUMEN

Biological drugs comprise a wide field of different modalities with respect to structure, pharmacokinetics and pharmacological function. Considerable non-clinical experience in the development of proteins (e.g. insulin) and antibodies has been accumulated over the past thirty years. In order to improve the efficacy and the safety of these biotherapeutics, Fc modifications (e.g. Fc silent antibody versions), combinations (antibody-drug conjugates, protein-nanoparticle combinations), and new constructs (darpins, fynomers) have been introduced. In the last decade, advanced therapy medicinal products (ATMPs) in research and development have become a considerable and strongly growing part of the biotherapeutic portfolio. ATMPs consisting of gene and cell therapy modalities or even combinations of them, further expand the level of complexity, which already exists in non-clinical development strategies for biological drugs and has thereby led to a further diversification of expertise in safety and PKPD assessment of biological drugs. It is the fundamental rationale of the BioSafe meetings, held yearly in the EU and in the US, to convene experts on a regular basis and foster knowledge exchange and mutual understanding in this fast growing area. In order to reflect at least partially the variety of the biotherapeutics field, the 2016 EU BioSafe meeting addressed the following topics in six sessions: (i) In vitro Meets in vivo to Leverage Biologics Development (ii) New developments and regulatory considerations in the cell and gene therapy field (iii) CMC Challenges with Biologics development (iv) Minipigs in non-clinical safety assessment (v) Opportunities of PKPD Assessment in Less Common Administration Routes In the breakout sessions the following questions were discussed: (i) Cynomolgus monkey as a reprotoxicology Species: Impact of Immunomodulators on Early Pregnancy Maintenance (ii) Safety Risk of Inflammation and Autoimmunity Induced by Immunomodulators (iii) Experience with non-GMP Material in Pivotal Non-clinical Safety Studies to Support First in Man (FiM) Trials (iv) Safety Assessment of Combination Products for Non-oncology.


Asunto(s)
Productos Biológicos , Animales , Productos Biológicos/administración & dosificación , Productos Biológicos/farmacocinética , Productos Biológicos/farmacología , Tratamiento Basado en Trasplante de Células y Tejidos , Evaluación Preclínica de Medicamentos , Terapia Genética , Macaca fascicularis , Porcinos , Porcinos Enanos
6.
Anal Chem ; 88(23): 11670-11677, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27934109

RESUMEN

The in vivo biotransformation of a novel fusion protein tetranectin/apolipoprotein A1 (TN-ApoA1) was investigated by ligand-binding mass spectrometry (LB-MS) in support of enzyme-linked immunosorbent assays (ELISA). The main focus was on catabolites formed by proteolysis of the fusion protein in rabbit following intravenous administration of lipidated TN-ApoA1. The drug and its catabolites were isolated from rabbit plasma by immunocapture with a monoclonal antibody (mAb) binding to the fusion region of TN-ApoA1. The captured drug and catabolites were released from the streptavidin-coated magnetic beads, separated by monolithic RP capillary HPLC, and online detected by high-resolution mass spectrometry. In addition, the same extract was digested with LysN to confirm or further narrow down the structure of the found catabolites. Two pharmacologically active catabolites were identified with conserved fusion region. The major catabolite [3-285] was formed by truncation of AP at the N-terminus and the minor catabolite [29-270] by truncations of either side of the TN-ApoA1 sequence. Since the ELISA determined the sum of TN-ApoA1, along with its two main catabolites, the individual PK profiles of all three components could be derived by applying their mass peak composition for each sampling point. Parent drug accounted for 25% of drug-related material, whereas that of the catabolites [3-285] and [29-270] accounted for 66% and 9%, respectively. This result could be obtained without catabolite specific ELISAs or quantitative LC-MS assays. It was also confirmed that all relevant functional molecules of TN-ApoA1 in the plasma samples were quantified by the ELISA, which provided a good relationship for pharmacokinetic/pharmacodynamic evaluations.


Asunto(s)
Apolipoproteína A-I/análisis , Ensayo de Inmunoadsorción Enzimática , Lectinas Tipo C/análisis , Sitios de Unión , Biotransformación , Ligandos , Espectrometría de Masas
7.
Regul Toxicol Pharmacol ; 80S: S1-S14, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27578450

RESUMEN

New challenges and opportunities in nonclinical safety testing of biotherapeutics were presented and discussed at the 5th European BioSafe Annual General Membership meeting in November 2015 in Ludwigshafen. This article summarizes the presentations and discussions from both the main and the breakout sessions. The following topics were covered in six main sessions: The following questions were discussed across 4 breakout sessions (i-iv) and a case-study based general discussion (v).


Asunto(s)
Anticuerpos/efectos adversos , Productos Biológicos/efectos adversos , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Terapia Genética/efectos adversos , Pruebas de Toxicidad/métodos , Alternativas a las Pruebas en Animales/métodos , Animales , Animales Modificados Genéticamente , Anticuerpos/química , Anticuerpos/inmunología , Productos Biológicos/química , Productos Biológicos/inmunología , Productos Biológicos/farmacocinética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Composición de Medicamentos , Terapia Genética/métodos , Humanos , Modelos Animales , Modelos Teóricos , Seguridad del Paciente , Polietilenglicoles/efectos adversos , Medición de Riesgo
8.
Drug Metab Dispos ; 42(11): 1881-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25100673

RESUMEN

Subcutaneous administration of biotherapeutics offers several potential advantages compared with intravenous administration. Many biotherapeutics, both marketed or in development, are administered via the subcutaneous route. This minireview provides an overview of the presystemic absorption processes following subcutaneous administration, the resulting pharmacokinetics after subcutaneous administration, and provides recent case examples of the development of subcutaneous administered drugs with a focus on monoclonal antibodies. Subcutaneous absorption of biotherapeutics is relatively slow and mostly incomplete. Knowledge of the subcutaneous tissue is important to understand the absorption kinetics after subcutaneous administration. Transport in the subcutis to the absorbing blood or lymph capillaries appears to be a major contributor to the slow subcutaneous absorption. Larger proteins (>20 kDa) are mostly absorbed via the lymphatic system, although potential species differences are not fully understood yet. Also, the presystemic catabolism leading to incomplete bioavailability is little understood, both the involved enzymes and its translation across species. For IgGs, binding to the neonatal Fc receptor is important to obtain a high bioavailability. Overall, several aspects of subcutaneous absorption are still poorly understood, which hampers, e.g., translation across species. Further research in this area is warranted.


Asunto(s)
Productos Biológicos/farmacocinética , Absorción Cutánea , Animales , Disponibilidad Biológica , Humanos , Infusiones Subcutáneas
9.
Regul Toxicol Pharmacol ; 69(2): 226-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24755365

RESUMEN

New challenges and opportunities in nonclinical safety testing of biologics were discussed at the 3rd European BioSafe Annual General Membership meeting in November 2013 in Berlin: (i)Approaches to refine use of non-human primates in non-clinical safety testing of biologics and current experience on the use of minipigs as alternative non-rodent species.(ii)Tissue distribution studies as a useful tool to support pharmacokinetic/pharmacodynamic (PKPD) assessment of biologics, in that they provide valuable mechanistic insights at drug levels at the site of action.(iii)Mechanisms of nonspecific toxicity of antibody drug conjugates (ADC) and ways to increase the safety margins.(iv)Although biologics toxicity typically manifests as exaggerated pharmacology there are some reported case studies on unexpected toxicity.(v)Specifics of non-clinical development approaches of noncanonical monoclonal antibodies (mAbs), like bispecifics and nanobodies.


Asunto(s)
Anticuerpos Monoclonales/efectos adversos , Productos Biológicos/efectos adversos , Evaluación Preclínica de Medicamentos/métodos , Seguridad , Pruebas de Toxicidad , Animales , Anticuerpos Biespecíficos/efectos adversos , Anticuerpos Biespecíficos/farmacocinética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacocinética , Productos Biológicos/inmunología , Productos Biológicos/farmacocinética , Humanos , Modelos Animales , Primates , Anticuerpos de Dominio Único/efectos adversos , Porcinos , Porcinos Enanos , Distribución Tisular
10.
Birth Defects Res B Dev Reprod Toxicol ; 98(2): 170-82, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23529913

RESUMEN

Interleukin-6 (IL-6) is involved in the pathogenesis of multiple disorders, including juvenile autoimmune diseases. IL-6 participates in a broad spectrum of physiological events, and the IL-6 receptor (IL-6R) is widely distributed across multiple organs. The interrelationship of development phases in juveniles together with organs involved in IL-6 signaling called for evaluations of anti-IL-6R antibody induced effects in a juvenile mouse model to assess the safety of such an approach in human juvenile arthritis. Here we show that naive mice in which IL-6 signals have been transiently blocked during the juvenile period develop normally. The fatal immunogenic reactions recorded earlier by repeated administration of the chosen rat anti-mouse IL-6R antibody, MR16-1, to mice were avoided successfully by application of a high loading dose followed by lower maintenance doses, with the support of modeling data. The high loading-dose regimen enabled us to conduct assessments without any major interference due to immunogenicity. Transient and complete inhibition of IL-6 signals from postnatal days 22 to 79 in mice exhibited no biologically important changes in sexual maturation or development of immune and skeletal systems. Although tendencies toward reductions of peripheral blood T-cell counts were observed, normal levels of antigen-specific IgG/IgM antibody productions indicating sufficient immunological functions were confirmed. Our results demonstrate that blockage of IL-6R by the neutralizing antibody does not affect juvenile development. This may be in part due to the generation or existence of compensatory pathways in the whole body system.


Asunto(s)
Anticuerpos Antiidiotipos/farmacología , Anticuerpos Neutralizantes/farmacología , Huesos/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Receptores de Interleucina-6/antagonistas & inhibidores , Reproducción/efectos de los fármacos , Animales , Anticuerpos Monoclonales/farmacología , Enfermedades Autoinmunes/inmunología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Sistema Inmunológico/metabolismo , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos ICR , Receptores de Interleucina-6/inmunología
11.
MAbs ; 14(1): 2145997, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36418217

RESUMEN

Monoclonal antibodies (mAbs) deliver great benefits to patients with chronic and/or severe diseases thanks to their strong specificity to the therapeutic target. As a result of this specificity, non-human primates (NHP) are often the only preclinical species in which therapeutic antibodies cross-react with the target. Here, we highlight the value and limitations that NHP studies bring to the design of safe and efficient early clinical trials. Indeed, data generated in NHPs are integrated with in vitro information to predict the concentration/effect relationship in human, and therefore the doses to be tested in first-in-human trials. The similarities and differences in the systems defining the pharmacokinetics and pharmacodynamics (PKPD) of mAbs in NHP and human define the nature and the potential of the preclinical investigations performed in NHPs. Examples have been collated where the use of NHP was either pivotal to the design of the first-in-human trial or, inversely, led to the termination of a project prior to clinical development. The potential impact of immunogenicity on the results generated in NHPs is discussed. Strategies to optimize the use of NHPs for PKPD purposes include the addition of PD endpoints in safety assessment studies and the potential re-use of NHPs after non-terminal studies or cassette dosing several therapeutic agents of interest. Efforts are also made to reduce the use of NHPs in the industry through the use of in vitro systems, alternative in vivo models, and in silico approaches. In the case of prediction of ocular PK, the body of evidence gathered over the last two decades renders the use of NHPs obsolete. Expert perspectives, advantages, and pitfalls with these alternative approaches are shared in this review.


Asunto(s)
Productos Biológicos , Animales , Humanos , Productos Biológicos/farmacología , Primates , Anticuerpos Monoclonales
12.
J Pharm Sci ; 111(4): 1208-1218, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34953862

RESUMEN

We present a novel approach for first-in-human (FIH) dose selection of the CD20xCD3 bispecific antibody, glofitamab, based on pharmacokinetic/pharmacodynamic (PKPD) assessment in cynomolgus monkeys to select a high, safe starting dose, with cytokine release (CR) as the PD endpoint. Glofitamab pharmacokinetics were studied in mice and cynomolgus monkeys; PKPD of IL-6, TNF-α and interferon-γ release following glofitamab, with/without obinutuzumab pretreatment (Gpt) was studied in cynomolgus monkeys. Potency differences for CR between cynomolgus monkeys and humans were determined by glofitamab incubation in whole blood of both species. The PKPD model for CR was translated to humans to project a starting dose that did not induce CR exceeding a clinically-predefined threshold. In cynomolgus monkeys, glofitamab showed a species-specific atypical high clearance, with and without B-cell debulking by Gpt. CR was related to glofitamab serum levels and B-cell counts. B-cell reduction by Gpt led to a marked decrease in CR. FIH starting dose (5 µg) was selected based on IL-6 release considering the markedly higher glofitamab in vitro potency in human vs monkey blood. This is a novel PKPD-based approach for selection of FIH starting dose for a CD20xCD3 bispecific antibody in B-cell lymphoma, evidenced in the glofitamab study, NP30179 (NCT03075696).


Asunto(s)
Anticuerpos Biespecíficos , Linfoma de Células B , Animales , Citocinas , Humanos , Interleucina-6 , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/patología , Macaca fascicularis , Ratones
13.
J Pharmacokinet Pharmacodyn ; 38(5): 581-93, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21779940

RESUMEN

The volume of distribution at steady state (Vss) of therapeutic proteins is usually assessed by non-compartmental or compartmental pharmacokinetic (PK) analysis wherein errors may arise due to the elimination of therapeutic proteins from peripheral tissues that are not in rapid equilibrium with the sampling compartment (usually blood). Here we explored another potential source of error in the estimation of Vss that is linked to the heterogeneity of therapeutic proteins which may consist of components (e.g. glycosylation variants) with different elimination rates. PK simulations were performed with such hypothetical binary protein mixtures where elimination was assumed to be exclusively from the central compartment. The simulations demonstrated that binary mixtures containing a rapid-elimination component can give rise to pronounced bi-phasic concentration-time profiles. Apparent Vss observed with both non-compartmental and 2-compartmental PK analysis, increased with increasing fraction as well as with increasing elimination rate k ( 10 ) of the rapid-elimination component. Simulation results were complemented by PK analysis of an in vivo study in cynomolgus monkeys with different lots of lenercept, a tumor necrosis factor receptor-immunoglobulin G1 fusion protein, with different heterogeneities. The comparative Vss data for the three lenercept lots with different amounts of rapidly cleared components were consistent with the outcome of our simulations. Both lots with a higher fraction of rapidly cleared components had a statistically significant higher Vss as compared to the reference lot. Overall our study demonstrates that Vss of a therapeutic protein may be overestimated in proteins with differently eliminated components.


Asunto(s)
Programas Informáticos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Simulación por Computador , Composición de Medicamentos , Glicosilación , Humanos , Cadenas gamma de Inmunoglobulina/química , Cadenas gamma de Inmunoglobulina/uso terapéutico , Macaca fascicularis , Tasa de Depuración Metabólica , Polisacáridos/farmacocinética , Estructura Cuaternaria de Proteína , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/uso terapéutico , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/uso terapéutico , Factores de Tiempo
14.
MAbs ; 13(1): 1993769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34711143

RESUMEN

A growing body of evidence supports the important role of molecular charge on antibody pharmacokinetics (PK), yet a quantitative description of the effect of charge on systemic and tissue disposition of antibodies is still lacking. Consequently, we have systematically engineered complementarity-determining regions (CDRs) of trastuzumab to create a series of variants with an isoelectric point (pI) range of 6.3-8.9 and a variable region (Fv) charge range of -8.9 to +10.9 (at pH 5.5), and have investigated in vitro and in vivo disposition of these molecules. These monoclonal antibodies (mAbs) exhibited incrementally enhanced binding to cell surfaces and cellular uptake with increased positive charge in antigen-negative cells. After single intravenous dosing in mice, a bell-shaped relationship between systemic exposure and Fv charge was observed, with both extended negative and positive charge patches leading to more rapid nonspecific clearance. Whole-body PK experiments revealed that, although overall exposures of most variants in the tissues were very similar, positive charge of mAbs led to significantly enhanced tissue:plasma concentration ratios for most tissues. In well-perfused organs such as liver, spleen, and kidney, the positive charge variants show superior accumulation. In tissues with continuous capillaries such as fat, muscle, skin, and bone, plasma concentrations governed tissue exposures. The in vitro and in vivo disposition data presented here facilitate better understanding of the impact of charge modifications on antibody PK, and suggest that alteration in the charge may help to improve tissue:plasma concentration ratios for mAbs in certain tissues. The data presented here also paves the way for the development of physiologically based pharmacokinetic models of mAbs that incorporate charge variations.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Animales , Antígenos , Regiones Determinantes de Complementariedad , Punto Isoeléctrico , Ratones
15.
MAbs ; 13(1): 1938796, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34241561

RESUMEN

New challenges and other topics in non-clinical safety testing of biotherapeutics were presented and discussed at the nineth European BioSafe Annual General Membership meeting in November 2019. The session topics were selected by European BioSafe organization committee members based on recent company achievements, agency interactions and new data obtained in the non-clinical safety testing of biotherapeutics, for which data sharing would be of interest and considered as valuable information. The presented session topics ranged from strategies of in vitro testing, immunogenicity prediction, bioimaging, and developmental and reproductive toxicology (DART) assessments to first-in-human (FIH) dose prediction and bioanalytical challenges, reflecting the entire space of different areas of expertise and different molecular modalities. During the 9th meeting of the European BioSafe members, the following topics were presented and discussed in 6 main sessions (with 3 or 4 presentations per session) and in three small group breakout sessions: 1) DART assessment with biotherapeutics: what did we learn and where to go?; 2) Non-animal testing strategies; 3) Seeing is believing: new frontiers in imaging; 4) Predicting immunogenicity during early drug development: hope or despair?; 5) Challenges in FIH dose projections; and 6) Non-canonical biologics formats: challenges in bioanalytics, PKPD and biotransformation for complex biologics formats. Small group breakout sessions were organized for team discussion about 3 specific topics: 1) Testing of cellular immune function in vitro and in vivo; 2) MABEL approach (toxicology and pharmacokinetic perspective); and 3) mRNA treatments. This workshop report presents the sessions and discussions at the meeting.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Humanos
16.
AAPS J ; 22(3): 63, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246215

RESUMEN

Minipigs have been proposed as animal model to study the subcutaneous (SC) absorption of monoclonal antibodies (mAb), because they are more translatable to humans than other species. However, the minipig SC tissue structure differs markedly depending on its location. This study explored different SC administration sites for mAb SC administration, to explore which site translates best to humans. The study assessed the SC absorption of tocilizumab (Actemra®) following administration at several injection sites: Inguinal area, flank, caudal to the ear, and interscapular area, in comparison with an IV group. After SC administration, tocilizumab absorption was most rapid from the inguinal administration site, and slowest after administration behind the ear, with absorption from the other sites in between. Tocilizumab bioavailability was 98.6, 88.3, 74.1, and 86.3% after administration in inguinal area, flank, behind the ear, and interscapular area, as determined by non-compartmental analysis. Fitting of a single first-order absorption rate constant by compartmental analysis was dissatisfactory. A combined fitting of all data was done assuming two different kinds of SC depots, one undergoing fast absorption, the other undergoing a slower absorption. The split between these absorption depots differed across administration sites, with absorption from "fast depot" in inguinal area > flank > interscapular area > behind the ear. Comparisons with clinical data show that tocilizumab PK after SC administration behind the ear translates best to humans, considering both bioavailability and rate of absorption. Whether this translation from minipigs to humans is prototypic for other mAb remains to be confirmed.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Modelos Animales , Absorción Cutánea , Porcinos Enanos , Animales , Anticuerpos Monoclonales Humanizados/farmacocinética , Humanos , Inyecciones Subcutáneas , Masculino , Modelos Biológicos , Porcinos
17.
MAbs ; 12(1): 1683432, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31769731

RESUMEN

The pharmacokinetic (PK) properties of therapeutic antibodies directly affect efficacy, dose and dose intervals, application route and tissue penetration. In indications where health-care providers and patients can choose between several efficacious and safe therapeutic options, convenience (determined by dosing interval or route of application), which is mainly driven by PK properties, can affect drug selection. Therapeutic antibodies can have greatly different PK even if they have identical Fc domains and show no target-mediated drug disposition. Biophysical properties like surface charge or hydrophobicity, and binding to surrogates for high abundant off-targets (e.g., baculovirus particles, Chinese hamster ovary cell membrane proteins) were proposed to be responsible for these differences. Here, we used heparin chromatography to separate a polyclonal mix of endogenous human IgGs (IVIG) into fractions that differ in their PK properties. Heparin was chosen as a surrogate for highly negatively charged glycocalyx components on endothelial cells, which are among the main contributors to nonspecific clearance. By directly correlating heparin retention time with clearance, we identified heparin chromatography as a tool to assess differences in unspecific cell-surface interaction and the likelihood for increased pinocytotic uptake and degradation. Building on these results, we combined predictors for FcRn-mediated recycling and cell-surface interaction. The combination of heparin and FcRn chromatography allow identification of antibodies with abnormal PK by mimicking the major root causes for fast, non-target-mediated, clearance of therapeutic, Fc-containing proteins.


Asunto(s)
Cromatografía/métodos , Células Endoteliales/metabolismo , Inmunoglobulinas Intravenosas/química , Animales , Células CHO , Cricetulus , Heparina/química , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inmunoglobulinas Intravenosas/metabolismo , Tasa de Depuración Metabólica , Pinocitosis , Unión Proteica , Proteolisis , Receptores Fc/metabolismo
18.
Nat Commun ; 11(1): 3196, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581215

RESUMEN

T-cell bispecific antibodies (TCBs) crosslink tumor and T-cells to induce tumor cell killing. While TCBs are very potent, on-target off-tumor toxicity remains a challenge when selecting targets. Here, we describe a protease-activated anti-folate receptor 1 TCB (Prot-FOLR1-TCB) equipped with an anti-idiotypic anti-CD3 mask connected to the anti-CD3 Fab through a tumor protease-cleavable linker. The potency of this Prot- FOLR1-TCB is recovered following protease-cleavage of the linker releasing the anti-idiotypic anti-CD3 scFv. In vivo, the Prot-FOLR1-TCB mediates antitumor efficacy comparable to the parental FOLR1-TCB whereas a noncleavable control Prot-FOLR1-TCB is inactive. In contrast, killing of bronchial epithelial and renal cortical cells with low FOLR1 expression is prevented compared to the parental FOLR1-TCB. The findings are confirmed for mesothelin as alternative tumor antigen. Thus, masking the anti-CD3 Fab fragment with an anti-idiotypic mask and cleavage of the mask by tumor-specific proteases can be applied to enhance specificity and safety of TCBs.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/metabolismo , Complejo CD3/inmunología , Receptor 1 de Folato/inmunología , Péptido Hidrolasas/metabolismo , Linfocitos T/inmunología , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/uso terapéutico , Línea Celular Tumoral , Proteínas Ligadas a GPI/inmunología , Humanos , Inmunoterapia , Activación de Linfocitos/efectos de los fármacos , Mesotelina , Ratones , Terapia Molecular Dirigida , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Pharm Sci ; 108(11): 3729-3736, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31351865

RESUMEN

The pharmacokinetics (PK) of the anti-CD20 monoclonal antibody obinutuzumab was assessed after single intravenous dosing to cynomolgus monkeys. In addition, the pharmacokinetic-pharmacodynamic (PKPD) relationship for B-cell depletion was characterized. The PKPD model was used to estimate the B-cell repopulation during the recovery phase of chronic toxicology studies, thereby supporting the study design, in particular planning the recovery phase duration. Marked immunogenicity against obinutuzumab was observed approximately 10 days after single dose, leading to an up to ∼30-fold increase in obinutuzumab clearance in the affected monkeys. Despite this accelerated clearance, the PK could be characterized, either by disregarding the clearance in noncompartmental PK analysis or by capturing it explicitly as an additional time-dependent clearance process in compartmental modeling. This latter step was crucial to model the PKPD of B-cells as an indirect response to obinutuzumab exposure, showing that-without immune response-the limiting factor is obinutuzumab elimination with concentrations below 0.02 µg/mL required for initiation of B-cell recovery. Overall, the results demonstrate that despite a marked anti-drug antibody response in the nonclinical animal species, the PK and PKPD of obinutuzumab could be characterized successfully by appropriately addressing the immune-modulated clearance pathway in data analysis and modeling.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales/farmacocinética , Antígenos CD20/metabolismo , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Macaca fascicularis
20.
MAbs ; 10(5): 803-813, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29621428

RESUMEN

The neonatal Fc receptor (FcRn) has been demonstrated to contribute to a high bioavailability of monoclonal antibodies (mAbs). In this study, we explored the cellular sites of FcRn-mediated protection after subcutaneous (SC) and intravenous (IV) administration. SC absorption and IV disposition kinetics of a mAb were studied in hFcRn transgenic (Tg) bone marrow chimeric mice in which hFcRn was restricted to radioresistant cells or hematopoietic cells. SC bioavailabilities close to 90% were observed in hFcRn Tg mice and chimeric mice with hFcRn expression in hematopoietic cells, whereas SC bioavailabilities were markedly lower when FcRn was missing in hematopoietic cells. Our study demonstrates: 1) FcRn in radiosensitive hematopoietic cells is required for high SC bioavailability, indicating first-pass catabolism after SC administration by hematopoietic cells; 2) FcRn-mediated transcytosis or recycling by radioresistent cells is not required for high SC bioavailability; and 3) after IV administration hematopoietic and radioresistent cells contribute about equally to clearance of the mAb. A pharmacokinetic model was devised to describe a mixed elimination via radioresistent and hematopoietic cells from vascular and extravascular compartments, respectively. Overall, the study indicates a relevant role of hematopoietic cells for first-pass clearance of mAbs after SC administration and confirms their role in the overall clearance of mAbs.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Células Madre Hematopoyéticas/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores Fc/metabolismo , Administración Intravenosa , Animales , Anticuerpos Monoclonales/administración & dosificación , Disponibilidad Biológica , Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inyecciones Subcutáneas , Tasa de Depuración Metabólica , Ratones , Ratones Transgénicos , Receptores Fc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA