Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biotechnol Bioeng ; 119(1): 72-88, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612513

RESUMEN

Effects of fluid dynamics on cells are often studied by growing the cells on the base of cylindrical wells or dishes that are swirled on the horizontal platform of an orbital shaker. The swirling culture medium applies a shear stress to the cells that varies in magnitude and directionality from the center to the edge of the vessel. Computational fluid dynamics methods are used to simulate the flow and hence calculate shear stresses at the base of the well. The shear characteristics at each radial location are then compared with cell behavior at the same position. Previous simulations have generally ignored effects of surface tension and wetting, and results have only occasionally been experimentally validated. We investigated whether such idealized simulations are sufficiently accurate, examining a commonly-used swirling well configuration. The breaking wave predicted by earlier simulations was not seen, and the edge-to-center difference in shear magnitude (but not directionality) almost disappeared, when surface tension and wetting were included. Optical measurements of fluid height and velocity agreed well only with the computational model that incorporated surface tension and wetting. These results demonstrate the importance of including accurate fluid properties in computational models of the swirling well method.


Asunto(s)
Técnicas de Cultivo de Célula , Simulación por Computador , Hidrodinámica , Modelos Biológicos , Células Endoteliales/citología , Resistencia al Corte , Estrés Mecánico
2.
Radiology ; 291(3): 642-650, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30990382

RESUMEN

Background Variations in lymph node (LN) microcirculation can be indicative of metastasis. The identification and quantification of metastatic LNs remains essential for prognosis and treatment planning, but a reliable noninvasive imaging technique is lacking. Three-dimensional super-resolution (SR) US has shown potential to noninvasively visualize microvascular networks in vivo. Purpose To study the feasibility of three-dimensional SR US imaging of rabbit LN microvascular structure and blood flow by using microbubbles. Materials and Methods In vivo studies were carried out to image popliteal LNs of two healthy male New Zealand white rabbits aged 6-8 weeks. Three-dimensional, high-frame-rate, contrast material-enhanced US was achieved by mechanically scanning with a linear imaging probe. Individual microbubbles were identified, localized, and tracked to form three-dimensional SR images and super-resolved velocity maps. Acoustic subaperture processing was used to improve image contrast and to generate enhanced power Doppler and color Doppler images. Vessel size and blood flow velocity distributions were evaluated and assessed by using Student paired t test. Results SR images revealed microvessels in the rabbit LN, with branches clearly resolved when separated by 30 µm, which is less than half of the acoustic wavelength and not resolvable by using power or color Doppler. The apparent size distribution of most vessels in the SR images was below 80 µm and agrees with micro-CT data, whereas most of those detected with Doppler techniques were larger than 80 µm in the images. The blood flow velocity distribution indicated that most of the blood flow in rabbit popliteal LN was at velocities lower than 5 mm/sec. Conclusion Three-dimensional super-resolution US imaging using microbubbles allows noninvasive nonionizing visualization and quantification of lymph node microvascular structures and blood flow dynamics with resolution below the wave diffraction limit. This technology has potential for studying the physiologic functions of the lymph system and for clinical detection of lymph node metastasis. Published under a CC BY 4.0 license. Online supplemental material is available for this article.


Asunto(s)
Imagenología Tridimensional/métodos , Ganglios Linfáticos , Microburbujas , Ultrasonografía/métodos , Animales , Estudios de Factibilidad , Ganglios Linfáticos/irrigación sanguínea , Ganglios Linfáticos/diagnóstico por imagen , Masculino , Microvasos/diagnóstico por imagen , Conejos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38109244

RESUMEN

Super-resolution ultrasound (SRUS) through localizing spatially isolated microbubbles (MBs) has been demonstrated to overcome the wave diffraction limit and reveal the microvascular structure and flow information at the microscopic scale. However, 3-D SRUS imaging remains a challenge due to the fabrication and computational complexity of 2-D matrix array probes. Inspired by X-ray radiography which can present information within a volume in a single projection image with much simpler hardware than X-ray computerized tomography (CT), this study investigates the feasibility of broad elevation projection super-resolution (BEP-SR) ultrasound using a 1-D unfocused linear array. Both simulation and in vitro experiments were conducted on 3-D microvessel phantoms. In vivo demonstration was done on the Rabbit kidney. Data from a 1-D linear array with and without an elevational focus were synthesized by summing up row signals acquired from a 2-D matrix array with and without delays. A full 3-D reconstruction was also generated as the reference, using the same data of the 2-D matrix array but without summing row signals. Results show that using an unfocused 1-D array probe, BEP-SR can capture significantly more information within a volume in both vascular structure and flow velocity than the conventional 1-D elevational-focused probe. Compared with the 2-D projection image of the full 3-D SRUS results using the 2-D array probe with the same aperture size, the 2-D projection SRUS image of BEP-SR has similar volume coverage, using 32 folds fewer independent elements. This study demonstrates BEP-SR's ability of high-resolution imaging of microvascular structures and flow velocity within a 3-D volume at significantly reduced costs. The proposed BEP method could significantly benefit the clinical translation of the SRUS imaging technique by making it more affordable and repeatable.


Asunto(s)
Microvasos , Tomografía Computarizada por Rayos X , Animales , Conejos , Ultrasonografía/métodos , Fantasmas de Imagen , Microvasos/diagnóstico por imagen , Microburbujas
4.
Ultrasound Med Biol ; 50(7): 1045-1057, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702285

RESUMEN

OBJECTIVE: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS: To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS: Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION: It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.


Asunto(s)
Imagenología Tridimensional , Ultrasonografía , Conejos , Animales , Humanos , Ultrasonografía/métodos , Imagenología Tridimensional/métodos , Diseño de Equipo , Fantasmas de Imagen , Piel/diagnóstico por imagen , Estudios de Factibilidad
5.
Invest Radiol ; 59(5): 379-390, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37843819

RESUMEN

OBJECTIVE: The aim of this study is to demonstrate 3-dimensional (3D) acoustic wave sparsely activated localization microscopy (AWSALM) of microvascular flow in vivo using phase change contrast agents (PCCAs). MATERIALS AND METHODS: Three-dimensional AWSALM using acoustically activable PCCAs was evaluated on a crossed tube microflow phantom, the kidney of New Zealand White rabbits, and the brain of C57BL/6J mice through intact skull. A mixture of C 3 F 8 and C 4 F 10 low-boiling-point fluorocarbon gas was used to generate PCCAs with an appropriate activation pressure. A multiplexed 8-MHz matrix array connected to a 256-channel ultrasound research platform was used for transmitting activation and imaging ultrasound pulses and recording echoes. The in vitro and in vivo echo data were subsequently beamformed and processed using a set of customized algorithms for generating 3D super-resolution ultrasound images through localizing and tracking activated contrast agents. RESULTS: With 3D AWSALM, the acoustic activation of PCCAs can be controlled both spatially and temporally, enabling contrast on demand and capable of revealing 3D microvascular connectivity. The spatial resolution of the 3D AWSALM images measured using Fourier shell correlation is 64 µm, presenting a 9-time improvement compared with the point spread function and 1.5 times compared with half the wavelength. Compared with the microbubble-based approach, more signals were localized in the microvasculature at similar concentrations while retaining sparsity and longer tracks in larger vessels. Transcranial imaging was demonstrated as a proof of principle of PCCA activation in the mouse brain with 3D AWSALM. CONCLUSIONS: Three-dimensional AWSALM generates volumetric ultrasound super-resolution microvascular images in vivo with spatiotemporal selectivity and enhanced microvascular penetration.


Asunto(s)
Medios de Contraste , Microscopía , Ratones , Animales , Conejos , Ratones Endogámicos C57BL , Sonido , Acústica , Ultrasonografía/métodos , Microburbujas
6.
Nat Biomed Eng ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710839

RESUMEN

Myocardial microvasculature and haemodynamics are indicative of potential microvascular diseases for patients with symptoms of coronary heart disease in the absence of obstructive coronary arteries. However, imaging microvascular structure and flow within the myocardium is challenging owing to the small size of the vessels and the constant movement of the patient's heart. Here we show the feasibility of transthoracic ultrasound localization microscopy for imaging myocardial microvasculature and haemodynamics in explanted pig hearts and in patients in vivo. Through a customized data-acquisition and processing pipeline with a cardiac phased-array probe, we leveraged motion correction and tracking to reconstruct the dynamics of microcirculation. For four patients, two of whom had impaired myocardial function, we obtained super-resolution images of myocardial vascular structure and flow using data acquired within a breath hold. Myocardial ultrasound localization microscopy may facilitate the understanding of myocardial microcirculation and the management of patients with cardiac microvascular diseases.

7.
IEEE Trans Med Imaging ; PP2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607705

RESUMEN

With the widespread interest and uptake of super-resolution ultrasound (SRUS) through localization and tracking of microbubbles, also known as ultrasound localization microscopy (ULM), many localization and tracking algorithms have been developed. ULM can image many centimeters into tissue in-vivo and track microvascular flow non-invasively with sub-diffraction resolution. In a significant community effort, we organized a challenge, Ultrasound Localization and TRacking Algorithms for Super-Resolution (ULTRA-SR). The aims of this paper are threefold: to describe the challenge organization, data generation, and winning algorithms; to present the metrics and methods for evaluating challenge entrants; and to report results and findings of the evaluation. Realistic ultrasound datasets containing microvascular flow for different clinical ultrasound frequencies were simulated, using vascular flow physics, acoustic field simulation and nonlinear bubble dynamics simulation. Based on these datasets, 38 submissions from 24 research groups were evaluated against ground truth using an evaluation framework with six metrics, three for localization and three for tracking. In-vivo mouse brain and human lymph node data were also provided, and performance assessed by an expert panel. Winning algorithms are described and discussed. The publicly available data with ground truth and the defined metrics for both localization and tracking present a valuable resource for researchers to benchmark algorithms and software, identify optimized methods/software for their data, and provide insight into the current limits of the field. In conclusion, Ultra-SR challenge has provided benchmarking data and tools as well as direct comparison and insights for a number of the state-of-the art localization and tracking algorithms.

8.
Ultrasound Med Biol ; 49(2): 473-488, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36335055

RESUMEN

Arterial pulse waves contain clinically useful information about cardiac performance, arterial stiffness and vessel tone. Here we describe a novel method for non-invasively assessing wave properties, based on measuring changes in blood flow velocity and arterial wall diameter during the cardiac cycle. Velocity and diameter were determined by tracking speckles in successive B-mode images acquired with an ultrafast scanner and plane-wave transmission. Blood speckle was separated from tissue by singular value decomposition and processed to correct biases in ultrasound imaging velocimetry. Results obtained in the rabbit aorta were compared with a conventional analysis based on blood velocity and pressure, employing measurements obtained with a clinical intra-arterial catheter system. This system had a poorer frequency response and greater lags but the pattern of net forward-traveling and backward-traveling waves was consistent between the two methods. Errors in wave speed were also similar in magnitude, and comparable reductions in wave intensity and delays in wave arrival were detected during ventricular dysfunction. The non-invasive method was applied to the carotid artery of a healthy human participant and gave a wave speed and patterns of wave intensity consistent with earlier measurements. The new system may have clinical utility in screening for heart failure.


Asunto(s)
Arterias Carótidas , Disfunción Ventricular , Animales , Humanos , Conejos , Ultrasonografía/métodos , Velocidad del Flujo Sanguíneo , Arterias Carótidas/diagnóstico por imagen , Arteria Carótida Común , Presión Sanguínea , Análisis de la Onda del Pulso
9.
IEEE Trans Med Imaging ; 42(4): 1056-1067, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36399587

RESUMEN

Perfusion by the microcirculation is key to the development, maintenance and pathology of tissue. Its measurement with high spatiotemporal resolution is consequently valuable but remains a challenge in deep tissue. Ultrasound Localization Microscopy (ULM) provides very high spatiotemporal resolution but the use of microbubbles requires low contrast agent concentrations, a long acquisition time, and gives little control over the spatial and temporal distribution of the microbubbles. The present study is the first to demonstrate Acoustic Wave Sparsely-Activated Localization Microscopy (AWSALM) and fast-AWSALM for in vivo super-resolution ultrasound imaging, offering contrast on demand and vascular selectivity. Three different formulations of acoustically activatable contrast agents were used. We demonstrate their use with ultrasound mechanical indices well within recommended safety limits to enable fast on-demand sparse activation and destruction at very high agent concentrations. We produce super-localization maps of the rabbit renal vasculature with acquisition times between 5.5 s and 0.25 s, and a 4-fold improvement in spatial resolution. We present the unique selectivity of AWSALM in visualizing specific vascular branches and downstream microvasculature, and we show super-localized kidney structures in systole (0.25 s) and diastole (0.25 s) with fast-AWSALM outperforming microbubble based ULM. In conclusion, we demonstrate the feasibility of fast and selective imaging of microvascular dynamics in vivo with subwavelength resolution using ultrasound and acoustically activatable nanodroplet contrast agents.


Asunto(s)
Medios de Contraste , Riñón , Animales , Conejos , Ultrasonografía/métodos , Riñón/diagnóstico por imagen , Microvasos/diagnóstico por imagen , Microscopía Acústica
10.
IEEE Trans Biomed Eng ; 70(9): 2752-2761, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37015124

RESUMEN

OBJECTIVE: Super-resolution ultrasound (SRUS) imaging through localising and tracking sparse microbubbles has been shown to reveal microvascular structure and flow beyond the wave diffraction limit. Most SRUS studies use standard delay and sum (DAS) beamforming, where high side lobes and broad main lobes make isolation and localisation of densely distributed bubbles challenging, particularly in 3D due to the typically small aperture of matrix array probes. METHOD: This study aimed to improve 3D SRUS by implementing a new fast 3D coherence beamformer based on channel signal variance. Two additional fast coherence beamformers, that have been implemented in 2D were implemented in 3D for the first time as comparison: a nonlinear beamformer with p-th root compression and a coherence factor beamformer. The 3D coherence beamformers, together with DAS, were compared in computer simulation, on a microflow phantom and in vivo. RESULTS: Simulation results demonstrated that all three adaptive weight-based beamformers can narrow the main lobe, suppress the side lobes, while maintaining the weaker scatter signals. Improved 3D SRUS images of microflow phantom and a rabbit kidney within a 3-second acquisition were obtained using the adaptive weight-based beamformers, when compared with DAS. CONCLUSION: The adaptive weight-based 3D beamformers can improve the SRUS and the proposed variance-based beamformer performs best in simulations and experiments. SIGNIFICANCE: Fast 3D SRUS would significantly enhance the potential utility of this emerging imaging modality in a broad range of biomedical applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Procesamiento de Señales Asistido por Computador , Conejos , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Simulación por Computador , Algoritmos , Imagenología Tridimensional , Ultrasonografía/métodos , Fantasmas de Imagen
11.
Ultrasound Med Biol ; 48(3): 437-449, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34876322

RESUMEN

Blood flow velocity and wall shear stress (WSS) influence and are influenced by vascular disease. Their measurement is consequently useful in the laboratory and clinic. Contrast-enhanced ultrasound image velocimetry (UIV) can estimate them accurately but the need to inject contrast agents limits utility. Singular value decomposition and high-frame-rate imaging may render contrast agents dispensable. Here we determined whether contrast agent-free UIV can measure flow and WSS. In simulation, accurate measurements were achieved with a signal-to-noise ratio of 13.5 dB or higher. Signal intensity in the rabbit aorta increased monotonically with mechanical index; it was lowest during stagnant flow and uneven across the vessel. In vivo measurements with contrast-free and contrast-enhanced UIV differed by 4.4% and 1.9% for velocity magnitude and angle and by 9.47% for WSS. Bland-Altman analysis of waveforms revealed good agreement between contrast-free and contrast-enhanced UIV. In five rabbits, the root-mean-square errors were as low as 0.022 m/s (0.81%) and 0.11 Pa (1.7%). This study indicates that with an optimised protocol, UIV can assess flow and WSS without contrast agents. Unlike contrast-enhanced UIV, contrast-free UIV could be routinely employed.


Asunto(s)
Aorta , Hemodinámica , Animales , Aorta/diagnóstico por imagen , Velocidad del Flujo Sanguíneo/fisiología , Conejos , Reología/métodos , Resistencia al Corte , Estrés Mecánico , Ultrasonografía/métodos
12.
Ultrasound Med Biol ; 45(9): 2456-2470, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31279503

RESUMEN

Contrast-enhanced ultrasound (CEUS) utilising microbubbles shows great potential for visualising lymphatic vessels and identifying sentinel lymph nodes (SLNs) which are valuable for axillary staging in breast cancer patients. However, current CEUS imaging techniques have limitations that affect the accurate visualisation and tracking of lymphatic vessels and SLN. (i) Tissue artefacts and bubble disruption can reduce the image contrast. (ii) Limited spatial and temporal resolution diminishes the amount of information that can be captured by CEUS. (iii) The slow lymph flow makes Doppler-based approaches less effective. This work evaluates on a lymphatic vessel phantom the use of high frame rate (HFR) CEUS for the detection of lymphatic vessels where flow is slow. Specifically, the work particularly investigates the impact of key factors in lymphatic imaging, including ultrasound pressure and flow velocity as well as probe motion during vessel tracking, on bubble disruption and image contrast. Experiments were also conducted to apply HFR CEUS imaging on vasculature in a rabbit popliteal lymph node (LN). Our results show that (i) HFR imaging and singular value decomposition (SVD) filtering can significantly reduce tissue artefacts in the phantom at high clinical frequencies; (ii) the slow flow rate within the phantom makes image contrast and signal persistence more susceptible to changes in ultrasound amplitude or mechanical index (MI), and an MI value can be chosen to reach a compromise between images contrast and bubble disruption under slow flow condition; (iii) probe motion significantly decreases image contrast of the vessel, which can be improved by applying motion correction before SVD filtering; (iv) the optical observation of the impact of ultrasound pressure on HFR CEUS further confirms the importance of optimising ultrasound amplitude and (v) vessels inside rabbit LN with blood flow less than 3 mm/s are clearly visualised.


Asunto(s)
Vasos Linfáticos/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Artefactos , Medios de Contraste , Azul de Evans , Femenino , Procesamiento de Imagen Asistido por Computador , Masculino , Microburbujas , Fantasmas de Imagen , Conejos
13.
Artículo en Inglés | MEDLINE | ID: mdl-29994672

RESUMEN

Being able to measure 3-D flow velocity and volumetric flow rate effectively in the cardiovascular system is valuable but remains a significant challenge in both clinical practice and research. Currently, there has not been an effective and practical solution to the measurement of volume flow using ultrasound imaging systems due to challenges in existing 3-D imaging techniques and high system cost. In this study, a new technique for quantifying volumetric flow rate from the cross-sectional imaging plane of the blood vessel was developed by using speckle decorrelation (SDC), 2-D high-frame-rate imaging with a standard 1-D array transducer, microbubble contrast agents, and ultrasound imaging velocimetry (UIV). Through SDC analysis of microbubble signals acquired with a very high frame rate and by using UIV to estimate the two in-plane flow velocity components, the third and out-of-plane velocity component can be obtained over time and integrated to estimate volume flow. The proposed technique was evaluated on a wall-less flow phantom in both steady and pulsatile flow. UIV in the longitudinal direction was conducted as a reference. The influences of frame rate, mechanical index (MI), orientation of imaging plane, and compounding on velocity estimation were also studied. In addition, an in vivo trial on the abdominal aorta of a rabbit was conducted. The results show that the new system can estimate volume flow with an averaged error of 3.65% ± 2.37% at a flow rate of 360 mL/min and a peak velocity of 0.45 m/s, and an error of 5.03% ± 2.73% at a flow rate of 723 mL/min and a peak velocity of 0.8 m/s. The accuracy of the flow velocity and volumetric flow rate estimation directly depend on the imaging frame rate. With a frame rate of 6000 Hz, a velocity up to 0.8 m/s can be correctly estimated. A higher mechanical index (MI = 0.42) is shown to produce greater errors (up to 21.78±0.49%, compared to 3.65±2.37% at MI = 0.19). An in vivo trial, where velocities up to 1 m/s were correctly measured, demonstrated the potential of the technique in clinical applications.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Medios de Contraste/química , Imagenología Tridimensional/métodos , Reología/métodos , Ultrasonografía/métodos , Animales , Aorta Abdominal/diagnóstico por imagen , Masculino , Microburbujas , Modelos Cardiovasculares , Fantasmas de Imagen , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA