Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37609336

RESUMEN

Immunoreceptor tyrosine-based activation motif (ITAM)-containing Fc receptors are critical components of the innate and adaptive immune systems. FcεRI mediates the allergic response via crosslinking of IgE-bound receptors by multivalent antigens. Yet, the underlying molecular mechanisms that govern the response of FcεRI to specific antigens remain poorly understood. We compared responses induced by two antigens with distinct geometries, high valency DNP-BSA and trivalent DF3, and found unique secretion and receptor phosphorylation profiles that are due to differential recruitment of Lyn and SHIP1. To understand how these two antigens can cause such markedly different outcomes, we used direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging combined with Bayesian Grouping of Localizations (BaGoL) analysis to compare the nanoscale characteristics of FcεRI aggregates. DF3 aggregates were found to be smaller and more densely packed than DNP-BSA aggregates. Using lifetime-based Förster resonance energy transfer (FRET) measurements, we discovered that FcεRI subunits undergo structural rearrangements upon crosslinking with either antigen, and in response to interaction with monovalent antigen presented on a supported lipid bilayer. The extent of conformational change is positively correlated with signaling efficiency. Finally, we provide evidence for forces in optimizing FcεRI signaling, such that immobilizing DF3 on a rigid surface promoted degranulation while increasing DNP-BSA flexibility lowered degranulation. These results provide a link between the physical attributes of allergens, including size, shape, valency, and flexibility, and FcεRI signaling strength. Thus, the antigen modulates mast cell outcomes by creating unique aggregate geometries that tune FcεRI conformation, phosphorylation and signaling partner recruitment.

2.
Nat Biotechnol ; 40(10): 1509-1519, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35879362

RESUMEN

The use of therapeutic monoclonal antibodies is constrained because single antigen targets often do not provide sufficient selectivity to distinguish diseased from healthy tissues. We present HexElect®, an approach to enhance the functional selectivity of therapeutic antibodies by making their activity dependent on clustering after binding to two different antigens expressed on the same target cell. lmmunoglobulin G (lgG)-mediated clustering of membrane receptors naturally occurs on cell surfaces to trigger complement- or cell-mediated effector functions or to initiate intracellular signaling. We engineer the Fc domains of two different lgG antibodies to suppress their individual homo-oligomerization while promoting their pairwise hetero-oligomerization after binding co-expressed antigens. We show that recruitment of complement component C1q to these hetero-oligomers leads to clustering-dependent activation of effector functions such as complement mediated killing of target cells or activation of cell surface receptors. HexElect allows selective antibody activity on target cells expressing unique, potentially unexplored combinations of surface antigens.


Asunto(s)
Antígenos , Complemento C1q , Anticuerpos Monoclonales , Antígenos de Superficie , Complemento C1q/metabolismo , Lógica
3.
Sci Rep ; 11(1): 20398, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650161

RESUMEN

SARS-CoV-2 infection depends on binding its spike (S) protein to angiotensin-converting enzyme 2 (ACE2). The S protein expresses an RGD motif, suggesting that integrins may be co-receptors. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating cell entry and productive infection. We used flow cytometry and confocal microscopy to show that SARS-CoV-2R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn2+, which induces integrin extension, enhances cell entry of SARS-CoV-2R18. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2R18 with basal state integrins, but is ineffective against Mn2+-activated integrins. RGD-integrin antagonists inhibited SARS-CoV-2R18 binding regardless of integrin activation status. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand-binding function of integrins via a talin-dependent mechanism, and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα13. Using cell-permeable peptide inhibitors of talin and Gα13 binding to the cytoplasmic tail of an integrin's ß subunit, we demonstrate that talin-mediated signaling is essential for productive infection.


Asunto(s)
COVID-19/metabolismo , Integrinas/metabolismo , SARS-CoV-2/fisiología , Internalización del Virus , Animales , Chlorocebus aethiops , Interacciones Huésped-Patógeno , Humanos , Transducción de Señal , Células Vero
4.
bioRxiv ; 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34312625

RESUMEN

Cellular entry of coronaviruses depends on binding of the viral spike (S) protein to a specific cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Furthermore, the viral spike protein expresses an RGD motif, suggesting that cell surface integrins may be attachment co-receptors. However, using infectious SARS-CoV-2 requires a biosafety level 3 laboratory (BSL-3), which limits the techniques that can be used to study the mechanism of cell entry. Here, we UV-inactivated SARS-CoV-2 and fluorescently labeled the envelope membrane with octadecyl rhodamine B (R18) to explore the role of integrin activation in mediating both cell entry and productive infection. We used flow cytometry and confocal fluorescence microscopy to show that fluorescently labeled SARS-CoV-2 R18 particles engage basal-state integrins. Furthermore, we demonstrate that Mn 2+ , which activates integrins and induces integrin extension, enhances cell binding and entry of SARS-CoV-2 R18 in proportion to the fraction of integrins activated. We also show that one class of integrin antagonist, which binds to the αI MIDAS site and stabilizes the inactive, closed conformation, selectively inhibits the engagement of SARS-CoV-2 R18 with basal state integrins, but is ineffective against Mn 2+ -activated integrins. At the same time, RGD-integrin antagonists inhibited SARS-CoV-2 R18 binding regardless of integrin activity state. Integrins transmit signals bidirectionally: 'inside-out' signaling primes the ligand binding function of integrins via a talin dependent mechanism and 'outside-in' signaling occurs downstream of integrin binding to macromolecular ligands. Outside-in signaling is mediated by Gα 13 and induces cell spreading, retraction, migration, and proliferation. Using cell-permeable peptide inhibitors of talin, and Gα 13 binding to the cytoplasmic tail of an integrin's ß subunit, we further demonstrate that talin-mediated signaling is essential for productive infection by SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA