Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 144(3): 283-295, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38598835

RESUMEN

ABSTRACT: Chromosomal translocation (4;14), an adverse prognostic factor in multiple myeloma (MM), drives overexpression of the histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2). A genome-wide CRISPR screen in MM cells identified adenylate kinase 2 (AK2), an enzyme critical for high-energy phosphate transfer from the mitochondria, as an NSD2-driven vulnerability. AK2 suppression in t(4;14) MM cells decreased nicotinamide adenine dinucleotide phosphate (NADP[H]) critical for conversion of ribonucleotides to deoxyribonucleosides, leading to replication stress, DNA damage, and apoptosis. Driving a large genome-wide increase in chromatin methylation, NSD2 overexpression depletes S-adenosylmethionine, compromising the synthesis of creatine from its precursor, guanidinoacetate. Creatine supplementation restored NADP(H) levels, reduced DNA damage, and rescued AK2-deficient t(4;14) MM cells. As the creatine phosphate shuttle constitutes an alternative means for mitochondrial high-energy phosphate transport, these results indicate that NSD2-driven creatine depletion underlies the hypersensitivity of t(4;14) MM cells to AK2 loss. Furthermore, AK2 depletion in t(4;14) cells impaired protein folding in the endoplasmic reticulum, consistent with impaired use of mitochondrial adenosine triphosphate (ATP). Accordingly, AK2 suppression increased the sensitivity of MM cells to proteasome inhibition. These findings delineate a novel mechanism in which aberrant transfer of carbon to the epigenome creates a metabolic vulnerability, with direct therapeutic implications for t(4;14) MM.


Asunto(s)
Adenilato Quinasa , N-Metiltransferasa de Histona-Lisina , Mieloma Múltiple , Translocación Genética , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Adenilato Quinasa/metabolismo , Adenilato Quinasa/genética , Cromosomas Humanos Par 14/genética , Epigenoma , Cromosomas Humanos Par 4/genética , Carbono/metabolismo , Línea Celular Tumoral , Proteínas Represoras
2.
Blood ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046770

RESUMEN

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration.

3.
Biol Direct ; 19(1): 33, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689301

RESUMEN

BACKGROUND: The Advanced Plant Experiment-04 - Epigenetic Expression (APEX-04-EpEx) experiment onboard the International Space Station examined the spaceflight-altered cytosine methylation in two genetic lines of Arabidopsis thaliana, wild-type Col-0 and the mutant elp2-5, which is deficient in an epigenetic regulator Elongator Complex Subunit 2 (ELP2). Whole-genome bisulfite sequencing (WGBS) revealed distinct spaceflight associated methylation differences, presenting the need to explore specific space-altered methylation at single-molecule resolution to associate specific changes over large regions of spaceflight related genes. To date, tools of multiplexed targeted DNA methylation sequencing remain limited for plant genomes. RESULTS: To provide methylation data at single-molecule resolution, Flap-enabled next-generation capture (FENGC), a novel targeted multiplexed DNA capture and enrichment technique allowing cleavage at any specified sites, was applied to survey spaceflight-altered DNA methylation in genic regions of interest. The FENGC capture panel contained 108 targets ranging from 509 to 704 nt within the promoter or gene body regions of gene targets derived from spaceflight whole-genome data sets. In addition to genes with significant changes in expression and average methylation levels between spaceflight and ground control, targets with space-altered distributions of the proportion of methylated cytosines per molecule were identified. Moreover, trends of co-methylation of different cytosine contexts were exhibited in the same DNA molecules. We further identified significant DNA methylation changes in three previously biological process-unknown genes, and loss-of-function mutants of two of these genes (named as EMO1 and EMO2 for ELP2-regulated Methylation in Orbit 1 and 2) showed enhanced root growth rate. CONCLUSIONS: FENGC simplifies and reduces the cost of multiplexed, targeted, single-molecule profiling of methylation in plants, providing additional resolution along each DNA molecule that is not seen in population-based short-read data such as WGBS. This case study has revealed spaceflight-altered regional modification of cytosine methylation occurring within single DNA molecules of cell subpopulations, which were not identified by WGBS. The single-molecule survey by FENGC can lead to identification of novel functional genes. The newly identified EMO1 and EMO2 are root growth regulators which may be epigenetically involved in plant adaptation to spaceflight.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , Raíces de Plantas , Vuelo Espacial , Arabidopsis/genética , Raíces de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Epigénesis Genética
4.
Cancer Immunol Res ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051633

RESUMEN

Immunotherapy has limited efficacy in glioblastoma (GBM) due to the blood-brain barrier and the immunosuppressed or "cold" tumor microenvironment (TME) of GBM, which is dominated by immune-inhibitory cells and depleted of cytotoxic T lymphocytes (CTL) and dendritic cells (DC). Here, we report the development and application of a machine-learning precision method to identify cell fate determinants (CFD) that specifically reprogram GBM into induced antigen-presenting cells with DC-like functions (iDC-APC). In murine GBM models, iDC-APCs acquired DC-like morphology, regulatory gene expression profile, and functions comparable to natural DCs. Among these acquired functions were phagocytosis, direct presentation of endogenous antigens, and cross presentation of exogenous antigens. The latter endowed the iDC-APCs with the ability to prime naïve CD8+ CTLs, a hallmark DC function critical for antitumor immunity. Intratumor iDC-APCs reduced tumor growth and improved survival only in immunocompetent animals, which coincided with extensive infiltration of CD4+ T cells and activated CD8+ CTLs in the TME. The reactivated TME synergized with an intratumor soluble PD-1 decoy immunotherapy and a DC-based GBM vaccine, resulting in robust killing of highly resistant GBM cells by tumor-specific CD8+ CTLs and significantly extended survival. Lastly, we defined a unique CFD combination specifically for the human GBM to iDC-APC conversion of both glioma stem-like cells (GSC) and non-GSC GBM cells, confirming the clinical utility of a computationally directed, tumor-specific conversion immunotherapy for GBM and potentially other solid tumors.

5.
Res Sq ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464090

RESUMEN

Cytosine methylation of genomic DNA contributes to the regulation of gene expression and is involved in normal development including hematopoiesis in mammals. It is catalyzed by the family of DNA methyltransferases (DNMTs) that include DNMT1, DNMT3A, and DNMT3B. Peripheral T-cell lymphomas (PTCLs) represent a diverse group of aggressive mature T-cell malignancies accounting for approximately 10-15% of non-Hodgkin lymphoma cases in the US. PTCLs exhibit a broad spectrum of clinical, histological, and immunophenotypic features with poor prognosis and inadequately understood molecular pathobiology. To better understand the molecular landscape and identify candidate genes involved in disease maintenance, we used high-resolution Whole Genome Bisulfite Sequencing (WGBS) and RNA-seq to profile DNA methylation and gene expression of PTCLs and normal T-cells. We found that the methylation patterns in PTCLs are deregulated and heterogeneous but share 767 hypo- and 567 hypermethylated differentially methylated regions (DMRs) along with 231 genes up- and 91 genes downregulated in all samples suggesting a potential association with tumor development. We further identified 39 hypomethylated promoters associated with increased gene expression in the majority of PTCLs. This putative oncogenic signature included the TRIP13 (thyroid hormone receptor interactor 13) gene whose both genetic and pharmacologic inactivation, inhibited cellular growth of PTCL cell lines by inducing G2-M arrest accompanied by apoptosis suggesting that such an approach might be beneficial in human lymphoma treatment. Altogether we show that human PTCLs are characterized by a large number of recurrent methylation alterations, and demonstrated that TRIP13 is critical for PTCL maintenance in vitro.

6.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405853

RESUMEN

The histone H3K27 demethylase KDM6A is a tumor suppressor in multiple cancers, including multiple myeloma (MM). We created isogenic MM cells disrupted for KDM6A and tagged the endogenous protein to facilitate genome wide studies. KDM6A binds genes associated with immune recognition and cytokine signaling. Most importantly, KDM6A binds and activates NLRC5 and CIITA encoding regulators of Major Histocompatibility Complex (MHC) genes. Patient data indicate that NLRC5 and CIITA, are downregulated in MM with low KDM6A expression. Chromatin analysis shows that KDM6A binds poised and active enhancers and KDM6A loss led to decreased H3K27ac at enhancers, increased H3K27me3 levels in body of genes bound by KDM6A and decreased gene expression. Reestablishing histone acetylation with an HDAC3 inhibitor leads to upregulation of MHC expression, offering a strategy to restore immunogenicity of KDM6A deficient tumors. Loss of Kdm6a in murine RAS-transformed fibroblasts led to increased growth in vivo associated with decreased T cell infiltration. Statement of significance: We show that KDM6A participates in immune recognition of myeloma tumor cells by directly regulating the expression of the master regulators of MHC-I and II, NLRC5 and CIITA. The expression of these regulators can by rescued by the HDAC3 inhibitors in KDM6A-null cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA