RESUMEN
The biomechanical and adaptive significance of variation in craniodental and mandibular morphology in fossil hominins is not always clear, at least in part because of a poor understanding of how different feeding behaviors impact feeding system design (form-function relationships). While laboratory studies suggest that ingestive behaviors produce variable loading, stress, and strain regimes in the cranium and mandible, understanding the relative importance of these behaviors for feeding system design requires data on their use in wild populations. Here we assess the frequencies and durations of manual, ingestive, and masticatory behaviors from more than 1400 observations of feeding behaviors video-recorded in a wild population of bearded capuchins (Sapajus libidinosus) at Fazenda Boa Vista in Piauí, Brazil. Our results suggest that ingestive behaviors in wild Sapajus libidinosus were used for a range of food material properties and typically performed using the anterior dentition. Coupled with previous laboratory work indicating that ingestive behaviors are associated with higher mandibular strain magnitudes than mastication, these results suggest that ingestive behaviors may play an important role in craniodental and mandibular design in capuchins and may be reflected in robust adaptations in fossil hominins.
Asunto(s)
Cebinae/metabolismo , Conducta Alimentaria/fisiología , Masticación/fisiología , Animales , Animales Salvajes , Antropología Física/métodos , Evolución Biológica , Fenómenos Biomecánicos , Ingestión de Alimentos/fisiología , Femenino , Masculino , Mandíbula/fisiologíaRESUMEN
OBJECTIVE: Despite mild traumatic brain injury (mTBI) accounting for 80% of head injury diagnoses, recognition of individuals at risk of cognitive dysfunction remains a challenge in the acute setting. The objective of this study was to evaluate the feasibility and potential role for computerised cognitive testing as part of a complete ED head injury assessment. METHODS: mTBI patients (n = 36) who incurred a head injury within 24 h of presentation to the ED were compared to trauma controls (n = 20) and healthy controls (n = 20) on tests assessing reaction time, speed and attention, episodic memory, working memory and executive functioning. Testing occurred during their visit to the ED at a mean of 12 h post-injury for mTBI and 9.4 h for trauma controls. These tasks were part of the Cambridge Neuropsychological Test Automated Battery iPad application. Healthy controls were tested in both a quiet environment and the ED to investigate the potential effects of noise and distraction on neurocognitive function. RESULTS: Reaction time was significantly slower in the mTBI group compared to trauma patients (P = 0.015) and healthy controls (P = 0.011), and deficits were also seen in working memory compared to healthy controls (P ≤ 0.001) and in executive functioning (P = 0.021 and P < 0.001) compared to trauma and healthy controls. Performances in the control group did not differ between testing environments. CONCLUSION: Computerised neurocognitive testing in the ED is feasible and can be utilised to detect deficits in cognitive performance in the mTBI population as part of a routine head injury assessment.