Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214705

RESUMEN

As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive settings, we ask if these responses are epiphenomenal companions or if there is evidence suggesting a more intertwined role of this system with cognitive function. Healthy male and female human participants performed an approach-avoidance paradigm, trading off monetary reward for painful electric shock, while we recorded simultaneous electroencephalographic (EEG) and cardiac-sympathetic signals. Participants were reward sensitive, but also experienced approach-avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-band (neural) dynamics were consistent with widening decision boundaries serving to combat reward-sensitivity and spread attention more fairly to all dimensions of available information. Independently, wider boundaries were also associated with cardiac "contractility" (an index of sympathetically mediated positive inotropy). We also saw evidence of conflict-specific "collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the alignment (i.e., product) of alpha dynamics and contractility were associated with a further widening of the boundary, independent of either signal's singular association. Cross-trial coherence analyses provided additional evidence that the autonomic systems controlling cardiac-sympathetics might influence the assessment of information streams during conflict by disrupting or overriding reward processing. We conclude that cardiac-sympathetic control might play a critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in humans.Significance statement Complex behavior likely involves coordination across multiple branches of the human nervous system. We know much of how cortical systems of the brain adapt to cognitive challenges. In parallel, we are beginning to understand that autonomic mediated responses in peripheral organ (cardiac-sympathetic) systems might also play an adaptive role in cognition, particularly complex decisions. We probed if such signals have separate or collaborative associations with behavior, using computational models of decision behavior, brain (electroencephalography) and cardiac-sympathetic (contractility) data. Our evidence suggests that these systems might work together, as humans attend to all available information when resolving particularly conflicting decisions. The cardiac-sympathetic system may be part of a coordinated response that helps balance the human tendency to overly focus on rewards.

2.
Hum Brain Mapp ; 45(11): e26785, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39031470

RESUMEN

Cyclic fluctuations in hypothalamic-pituitary-gonadal axis (HPG-axis) hormones exert powerful behavioral, structural, and functional effects through actions on the mammalian central nervous system. Yet, very little is known about how these fluctuations alter the structural nodes and information highways of the human brain. In a study of 30 naturally cycling women, we employed multidimensional diffusion and T1-weighted imaging during three estimated menstrual cycle phases (menses, ovulation, and mid-luteal) to investigate whether HPG-axis hormone concentrations co-fluctuate with alterations in white matter (WM) microstructure, cortical thickness (CT), and brain volume. Across the whole brain, 17ß-estradiol and luteinizing hormone (LH) concentrations were directly proportional to diffusion anisotropy (µFA; 17ß-estradiol: ß1 = 0.145, highest density interval (HDI) = [0.211, 0.4]; LH: ß1 = 0.111, HDI = [0.157, 0.364]), while follicle-stimulating hormone (FSH) was directly proportional to CT (ß1 = 0 .162, HDI = [0.115, 0.678]). Within several individual regions, FSH and progesterone demonstrated opposing relationships with mean diffusivity (Diso) and CT. These regions mainly reside within the temporal and occipital lobes, with functional implications for the limbic and visual systems. Finally, progesterone was associated with increased tissue (ß1 = 0.66, HDI = [0.607, 15.845]) and decreased cerebrospinal fluid (CSF; ß1 = -0.749, HDI = [-11.604, -0.903]) volumes, with total brain volume remaining unchanged. These results are the first to report simultaneous brain-wide changes in human WM microstructure and CT coinciding with menstrual cycle-driven hormone rhythms. Effects were observed in both classically known HPG-axis receptor-dense regions (medial temporal lobe, prefrontal cortex) and in other regions located across frontal, occipital, temporal, and parietal lobes. Our results suggest that HPG-axis hormone fluctuations may have significant structural impacts across the entire brain.


Asunto(s)
Encéfalo , Estradiol , Sustancia Gris , Hormona Luteinizante , Ciclo Menstrual , Sustancia Blanca , Humanos , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo , Adulto , Ciclo Menstrual/fisiología , Estradiol/sangre , Adulto Joven , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Hormona Luteinizante/sangre , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Hormona Folículo Estimulante/sangre , Progesterona/sangre , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética
3.
Neurorehabil Neural Repair ; : 15459683241270080, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162287

RESUMEN

BACKGROUND AND OBJECTIVE: The biomarkers of hand function may differ based on level of motor impairment after stroke. The objective of this study was to determine the relationship between resting state functional connectivity (RsFC) and unimanual contralesional hand function after stroke and whether brain-behavior relationships differ based on level of grasp function. METHODS: Sixty-two individuals with chronic, left-hemisphere stroke were separated into three functional levels based on Box and Blocks Test performance with the contralesional hand: Low (moved 0 blocks), Moderate (moved >0% but <90% of blocks relative to the ipsilesional hand), and High (moved ≥90% of blocks relative to the ipsilesional hand). RESULTS: RsFC in the ipsilesional and interhemispheric motor networks was reduced in the Low group compared to the Moderate and High groups. While interhemispheric RsFC correlated with hand function (grip strength and Stroke Impact Scale Hand) across the sample, contralesional RsFC correlated with hand function in the Low group and no measures of connectivity correlated with hand function in the Moderate and High groups. Linear regression modeling found that contralesional RsFC significantly predicted hand function in the Low group, while no measure correlated with hand function in the High group. Corticospinal tract integrity was the only predictor of hand function for the Moderate group and in an analysis across the entire sample. CONCLUSIONS: Differences in brain-hand function relationships based on level of motor impairment may have implications for predictive models of treatment response and the development of intervention protocols aimed at improving hand function after stroke.

4.
Sci Rep ; 13(1): 6486, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081031

RESUMEN

Heuristics can inform human decision making in complex environments through a reduction of computational requirements (accuracy-resource trade-off) and a robustness to overparameterisation (less-is-more). However, tasks capturing the efficiency of heuristics typically ignore action proficiency in determining rewards. The requisite movement parameterisation in sensorimotor control questions whether heuristics preserve efficiency when actions are nontrivial. We developed a novel action selection-execution task requiring joint optimisation of action selection and spatio-temporal skillful execution. State-appropriate choices could be determined by a simple spatial heuristic, or by more complex planning. Computational models of action selection parsimoniously distinguished human participants who adopted the heuristic from those using a more complex planning strategy. Broader comparative analyses then revealed that participants using the heuristic showed combined decisional (selection) and skill (execution) advantages, consistent with a less-is-more framework. In addition, the skill advantage of the heuristic group was predominantly in the core spatial features that also shaped their decision policy, evidence that the dimensions of information guiding action selection might be yoked to salient features in skill learning.


Asunto(s)
Heurística , Aprendizaje , Humanos , Recompensa , Toma de Decisiones
5.
Drug Alcohol Depend ; 213: 108104, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32570138

RESUMEN

BACKGROUND: Radioligands for the translocator protein (TSPO) 18 kDa have been used with positron emission tomography (PET) to assess neuroinflammation and microglial activation in psychiatric disorders. One study using this approach showed substantial TSPO elevation throughout the brain in chronic methamphetamine users following long-term abstinence (0.5-4 years), but clients typically present for treatment earlier in abstinence. METHODS: We used PET with [11C]DAA1106 to compare standardized uptake values (SUVs) as an index of TSPO binding in the brains of methamphetamine-dependent participants who were abstinent for < 6 months (n = 11) and healthy controls (n = 12). We also assayed other typical correlates of Methamphetamine Dependence (e.g., striatal D2-type dopamine receptor deficits, depressed mood, anxiety and impaired emotion regulation). RESULTS: Methamphetamine users exhibited depression (p < 0.0001), anxiety (p = 0.002), difficulties in emotional regulation (p = 0.01), and lower striatal dopamine D2-type receptor availability vs. controls (p = 0.02). SUVs for [11C]DAA1106 were larger in all brain regions of methamphetamine-dependent participants vs. controls, but the effect size was small to medium and not statistically significant. CONCLUSIONS: The discrepancy between the lack of significant difference in TSPO binding in early-abstinent methamphetamine users vs. controls in this study and a previous report of elevated binding in longer-abstinent methamphetamine users may reflect methodological differences or limitations of TSPO binding as an index of neuroinflammation. It also seems possible that gliosis increases over time during the first 6 months of abstinence; longitudinal studies could clarify this possibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA