Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 38(14): 3507-3519, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483279

RESUMEN

Cue-reward associations form distinct memories that can drive appetitive behaviors and are involved in craving for both drugs and natural rewards. Distinct sets of neurons, so-called neuronal ensembles, in the infralimbic area (IL) of the medial prefrontal cortex (mPFC) play a key role in alcohol seeking. Whether this ensemble is specific for alcohol or controls reward seeking in general remains unclear. Here, we compared IL ensembles formed upon recall of drug (alcohol) or natural reward (saccharin) memories in male Wistar rats. Using an experimental framework that allows identification of two distinct reward-associated ensembles within the same animal, we found that cue-induced seeking of either alcohol or saccharin activated ensembles of similar size and organization, whereby these ensembles consist of largely overlapping neuronal populations. Thus, the IL seems to act as a general integration hub for reward seeking behavior, but also contains subsets of neurons that encode for the different rewards.SIGNIFICANCE STATEMENT Cue-reward associations form distinct memories that can act as drivers of appetitive behaviors and are involved in craving for natural rewards as well as for drugs. Distinct sets of neurons, so-called neuronal ensembles, in the infralimbic area of the mPFC play a key role in cue-triggered reward seeking. However, it is unclear whether these ensembles act as broadly tuned controllers of approach behavior or represent the learned associations between specific cues and rewards. Using an experimental framework that allows identification of two distinct reward-associated ensembles within the same animal we find largely overlapping neuronal populations. Repeated activation by two distinct events could reflect the linking of the two memory traces within the same neuron.


Asunto(s)
Conducta de Elección , Comportamiento de Búsqueda de Drogas , Corteza Prefrontal/fisiología , Recompensa , Animales , Masculino , Neuronas/fisiología , Corteza Prefrontal/citología , Ratas , Ratas Wistar
2.
Proc Natl Acad Sci U S A ; 113(11): 3024-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26903621

RESUMEN

A major hypothesis in addiction research is that alcohol induces neuroadaptations in the mesolimbic dopamine (DA) system and that these neuroadaptations represent a key neurochemical event in compulsive drug use and relapse. Whether these neuroadaptations lead to a hypo- or hyperdopaminergic state during abstinence is a long-standing, unresolved debate among addiction researchers. The answer is of critical importance for understanding the neurobiological mechanism of addictive behavior. Here we set out to study systematically the neuroadaptive changes in the DA system during the addiction cycle in alcohol-dependent patients and rats. In postmortem brain samples from human alcoholics we found a strong down-regulation of the D1 receptor- and DA transporter (DAT)-binding sites, but D2-like receptor binding was unaffected. To gain insight into the time course of these neuroadaptations, we compared the human data with that from alcohol-dependent rats at several time points during abstinence. We found a dynamic regulation of D1 and DAT during 3 wk of abstinence. After the third week the rat data mirrored our human data. This time point was characterized by elevated extracellular DA levels, lack of synaptic response to D1 stimulation, and augmented motor activity. Further functional evidence is given by a genetic rat model for hyperdopaminergia that resembles a phenocopy of alcohol-dependent rats during protracted abstinence. In summary, we provide a new dynamic model of abstinence-related changes in the striatal DA system; in this model a hyperdopaminergic state during protracted abstinence is associated with vulnerability for relapse.


Asunto(s)
Abstinencia de Alcohol , Alcoholismo/metabolismo , Dopamina/fisiología , Etanol/efectos adversos , Síndrome de Abstinencia a Sustancias/metabolismo , Ácido 3,4-Dihidroxifenilacético/análisis , Adulto , Anciano , Animales , Benzazepinas/farmacología , Química Encefálica , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Etanol/toxicidad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Ácido Homovanílico/análisis , Humanos , Masculino , Persona de Mediana Edad , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Ratas Transgénicas , Ratas Wistar , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Recurrencia , Transcripción Genética
3.
J Pharmacol Exp Ther ; 365(1): 202-211, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29367277

RESUMEN

It has recently been demonstrated that pharmacological blockade of the glycine transporter 1 (GlyT1) reduced alcohol intake and relapse in rats. The aim of the present study was to further explore the role of GlyT1 in alcohol relapse-like behavior. For this purpose we used three different GlyT1 blockers-SSR504734, A-1246399, and RO4993850-and tested their effect on alcohol-seeking and relapse-like consumption. Two behavioral models, the alcohol deprivation effect model and the cue-induced reinstatement model, were used. Our data show that all three GlyT1 blockers reduce relapse-like alcohol consumption and cause either minimal or no side effects, measured as changes in home-cage activity, water intake, and body weight. In the reinstatement test, GlyT1 blockers completely abolished alcohol-seeking responses. Furthermore, we tested other drug/cue associations and found that cocaine-seeking responses were also abolished by GlyT1 blockade. Our data confirm that GlyT1 can be used as a target to develop novel anticraving and antirelapse drugs.


Asunto(s)
Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Consumo de Bebidas Alcohólicas/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Etanol/farmacología , Glicina/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Cocaína/farmacología , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Masculino , Ratas , Ratas Wistar , Recurrencia
4.
Dis Model Mech ; 10(4): 451-461, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28167616

RESUMEN

The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene (Slc6a3_N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Trastornos Mentales/diagnóstico , Trastornos Mentales/genética , Animales , Conducta Animal , Modelos Animales de Enfermedad , Dopamina , Células HEK293 , Humanos , Mutación con Pérdida de Función , Masculino , Proteínas Mutantes/metabolismo , Fenotipo , Mutación Puntual , Psiquiatría , Ratas Endogámicas F344
5.
Mol Ther Nucleic Acids ; 5: e309, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27070301

RESUMEN

Controlling gene expression in mammalian brain is of utmost importance to causally link the role of gene function to cell circuit dynamics under normal conditions and disease states. We have developed recombinant adeno-associated viruses equipped with tetracycline-controlled genetic switches for inducible and reversible control of gene expression in a cell type specific and brain subregion selective manner. Here, we characterize a two-virus approach to efficiently and reliably switch gene expression on and off, repetitively, both in vitro and in vivo. Our recombinant adeno-associated virus (rAAV)-Tet approach is highly flexible and it has great potential for application in basic and biomedical neuroscience research and gene therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA