Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Rev Lett ; 127(5): 058001, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34397240

RESUMEN

We report observations of nanosecond nonuniform colloidal dynamics in a free flowing liquid jet using ultrafast x-ray speckle visibility spectroscopy. Utilizing a nanosecond double-bunch mode, the Linac Coherent Light Source free electron laser produced pairs of femtosecond coherent hard x-ray pulses. By exploring anisotropy in the visibility of summed speckle patterns which relates to the correlation functions, we evaluate not only the average particle flow rate in a colloidal nanoparticle jet, but also the nonuniform flow field within. The methodology presented here establishes the foundation for the study of nano- and atomic-scale inhomogeneous fluctuations in complex matter using x-ray free electron laser sources.

2.
J Synchrotron Radiat ; 27(Pt 6): 1470-1476, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147171

RESUMEN

X-ray free-electron lasers (X-FELs) present new opportunities to study ultrafast lattice dynamics in complex materials. While the unprecedented source brilliance enables high fidelity measurement of structural dynamics, it also raises experimental challenges related to the understanding and control of beam-induced irreversible structural changes in samples that can ultimately impact the interpretation of experimental results. This is also important for designing reliable high performance X-ray optical components. In this work, X-FEL beam-induced lattice alterations are investigated by measuring the shot-to-shot evolution of near-Bragg coherent scattering from a single crystalline germanium sample. It is shown that X-ray photon correlation analysis of sequential speckle patterns measurements can be used to monitor the nature and extent of lattice rearrangements. Abrupt, irreversible changes are observed following intermittent high-fluence monochromatic X-ray pulses, thus revealing the existence of a threshold response to X-FEL pulse intensity.

3.
J Synchrotron Radiat ; 26(Pt 2): 320-327, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855238

RESUMEN

X-ray free-electron lasers provide intense pulses of coherent X-rays with a short pulse duration. These sources are chaotic by nature and therefore, to be used at their full potential, require that every X-ray pulse is characterized in terms of various relevant properties such as intensity, photon energy, position and timing. Diagnostics are for example installed on an X-ray beamline to specifically monitor the intensity of individual X-ray pulses. To date, these can however only provide a single-shot value of the relative number of photons per shot. Here are reported measurements made in January 2015 of the absolute number of photons in the hard X-ray regime at LCLS which is typically 3.5 × 1011 photons shot-1 between 6 and 9.5 keV at the X-ray Pump-Probe instrument. Moreover, an average transmission of ≉62% of the hard X-ray beamline over this energy range is measured and the third-harmonic content of ≉0.47% below 9 keV is characterized.

4.
Opt Lett ; 44(10): 2582-2585, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31090737

RESUMEN

We present the concept and a prototypical implementation of a compact x-ray split-delay system that is capable of performing continuous on-the-fly delay scans over a range of ∼10 ps with sub-100 nanoradian pointing stability. The system consists of four channel-cut silicon crystals, two of which have gradually varying gap sizes from intentional 5 deg asymmetric cuts. The delay adjustment is realized by linear motions of these two monolithic varying-gap channel cuts, where the x-ray beam experiences pairs of anti-parallel reflections, and thus becomes less sensitive in output beam pointing to motion imperfections of the translation stages. The beam splitting is accomplished by polished crystal edges. A high degree of mutual coherence between the two branches at the focus is observed by analyzing small-angle coherent x-ray scattering patterns. We envision a wide range of applications including single-shot x-ray pulse temporal diagnostics, studies of high-intensity x-ray-matter interactions, as well as measurement of dynamics in disordered material systems using split-pulse x-ray photon correlation spectroscopy.

5.
J Synchrotron Radiat ; 25(Pt 3): 642-649, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714175

RESUMEN

The recent demonstration of the `nanosecond double-bunch' operation mode, i.e. two X-ray pulses separated in time between 0.35 and hundreds of nanoseconds and by increments of 0.35 ns, offers new opportunities to investigate ultrafast dynamics in diverse systems of interest. However, in order to reach its full potential, this mode of operation requires the precise characterization of the intensity of each X-ray pulse within each pulse pair for any time separation. Here, a transmissive single-shot diagnostic that achieves this goal for time separations larger than 0.7 ns with a precision better than 5% is presented. It also provides real-time monitoring feedback to help tune the accelerator parameters to deliver double pulse intensity distributions optimized for specific experimental goals.

6.
J Synchrotron Radiat ; 25(Pt 1): 20-25, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29271746

RESUMEN

The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ∼1.5 µm in full width at half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. Errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.

7.
Opt Express ; 25(3): 2852-2862, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29519002

RESUMEN

A precise spectral characterization of every single pulse is required in many x-ray free-electron laser (XFEL) experiments due to the fluctuating spectral content of self-amplified spontaneous emission (SASE) beams. Bent single-crystal spectrometers can provide sufficient spectral resolution to resolve the SASE spikes while also covering the full SASE bandwidth. To better withstand the high heat load induced by the 4.5 MHz repetition rate of pulses at the forthcoming European XFEL facility, a spectrometer based on single-crystal diamond has been developed. We report a direct comparison of the diamond spectrometer with its Si counterpart in experiments performed at the Linac Coherent Light Source.

8.
J Synchrotron Radiat ; 23(Pt 5): 1171-9, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27577772

RESUMEN

A prototype ePix100 detector was used in small-angle scattering geometry to capture speckle patterns from a static sample using the Linac Coherent Light Source (LCLS) hard X-ray free-electron laser at 8.34 keV. The average number of detected photons per pixel per pulse was varied over three orders of magnitude from about 23 down to 0.01 to test the detector performance. At high average photon count rates, the speckle contrast was evaluated by analyzing the probability distribution of the pixel counts at a constant scattering vector for single frames. For very low average photon counts of less than 0.2 per pixel, the `droplet algorithm' was first applied to the patterns for correcting the effect of charge sharing, and then the pixel count statistics of multiple frames were analyzed collectively to extract the speckle contrast. Results obtained using both methods agree within the uncertainty intervals, providing strong experimental evidence for the validity of the statistical analysis. More importantly it confirms the suitability of the ePix100 detector for X-ray coherent scattering experiments, especially at very low count rates with performances surpassing those of previously available LCLS detectors.

9.
J Synchrotron Radiat ; 22(3): 472-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931055

RESUMEN

The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.

10.
J Synchrotron Radiat ; 22(3): 599-605, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931074

RESUMEN

X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

11.
J Synchrotron Radiat ; 22(3): 612-20, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931076

RESUMEN

X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.

12.
J Synchrotron Radiat ; 22(3): 503-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931060

RESUMEN

The X-ray Pump-Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4-24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.


Asunto(s)
Cristalografía por Rayos X/instrumentación , Rayos Láser , Aceleradores de Partículas/instrumentación , Espectrometría por Rayos X/instrumentación , Rayos X , California , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Iluminación/instrumentación
13.
J Synchrotron Radiat ; 22(3): 508-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931061

RESUMEN

The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4-25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented.

14.
Eur Phys J Plus ; 138(6): 495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304246

RESUMEN

MAX IV Laboratory is a Swedish national synchrotron radiation facility that comprises three accelerators with varying characteristics. One of the accelerators, the 3 GeV storage ring, is the world's first fourth-generation ring and pioneered the use of the multibend achromat lattice to provide access to ultrahigh brightness X-rays. MAX IV aims to stay at the forefront of the current and future research needs of its multidisciplinary user community, principally located in the Nordic and Baltic regions. Our 16 beamlines currently offer and continue to develop modern X-ray spectroscopy, scattering, diffraction, and imaging techniques to address scientific problems of importance to society.

15.
Opt Express ; 20(9): 9790-800, 2012 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-22535072

RESUMEN

We report on the feasibility of high wavevector temporal speckle correlation measurements at the world's first hard x-ray free electron laser, the Linac Coherent Light Source (LCLS). Due to the chaotic nature of LCLS, the spectral profile of the x-ray radiation fluctuates on a pulse-to-pulse basis. Its impact on the determination of the single shot speckle contrast in a wide angle x-ray scattering geometry is investigated by analyzing FEL power spectra that are simulated based on the nominal operational parameters of LCLS. Ultimately, a potential scheme to deliver a single-mode hard x-ray pulse is proposed by using a narrow bandpass crystal monochromator.


Asunto(s)
Aceleradores de Partículas , Difracción de Rayos X/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad
16.
J Synchrotron Radiat ; 18(Pt 3): 481-91, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21525658

RESUMEN

A hard X-ray delay line capable of splitting and delaying single X-ray pulses has been developed with the aim of performing X-ray photon correlation spectroscopy (XPCS) and X-ray pump-probe experiments at hard X-ray free-electron laser sources. The performance of the device was tested with 8.39 keV synchrotron radiation. Time delays up to 2.95 ns have been demonstrated. The feasibility of the device for performing XPCS studies was tested by recording static speckle patterns. The achieved speckle contrast of 56% indicates the possibility of performing ultra-fast XPCS studies with the delay line.

17.
Sci Rep ; 10(1): 5054, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193442

RESUMEN

The ability to deliver two coherent X-ray pulses with precise time-delays ranging from a few femtoseconds to nanoseconds enables critical capabilities of probing ultra-fast phenomena in condensed matter systems at X-ray free electron laser (FEL) sources. Recent progress made in the hard X-ray split-and-delay optics developments now brings a very promising prospect for resolving atomic-scale motions that were not accessible by previous time-resolved techniques. Here, we report on characterizing the spatial and temporal coherence properties of the hard X-ray FEL beam after propagating through split-and-delay optics. Speckle contrast analysis of small-angle scattering measurements from nanoparticles reveals well-preserved transverse coherence of the beam. Measuring intensity fluctuations from successive X-ray pulses also reveals that only single or double temporal modes remain in the transmitted beam, corresponding to nearly Fourier transform limited pulses.

18.
Sci Rep ; 10(1): 16837, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033373

RESUMEN

We report the time-resolved femtosecond evolution of the K-shell X-ray emission spectra of iron during high intensity illumination of X-rays in a micron-sized focused hard X-ray free electron laser (XFEL) beam. Detailed pulse length dependent measurements revealed that rapid spectral energy shift and broadening started within the first 10 fs of the X-ray illumination at intensity levels between 1017 and 1018 W cm-2. We attribute these spectral changes to the rapid evolution of high-density photoelectron mediated secondary collisional ionization processes upon the absorption of the incident XFEL radiation. These fast electronic processes, occurring at timescales well within the typical XFEL pulse durations (i.e., tens of fs), set the boundary conditions of the pulse intensity and sample parameters where the widely-accepted 'probe-before-destroy' measurement strategy can be adopted for electronic-structure related XFEL experiments.

19.
Nat Commun ; 11(1): 5901, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33214547

RESUMEN

Zeolites are three-dimensional aluminosilicates having unique properties from the size and connectivity of their sub-nanometer pores, the Si/Al ratio of the anionic framework, and the charge-balancing cations. The inhomogeneous distribution of the cations affects their catalytic performances because it influences the intra-crystalline diffusion rates of the reactants and products. However, the structural deformation regarding inhomogeneous active regions during the catalysis is not yet observed by conventional analytical tools. Here we employ in situ X-ray free electron laser-based time-resolved coherent X-ray diffraction imaging to investigate the internal deformations originating from the inhomogeneous Cu ion distributions in Cu-exchanged ZSM-5 zeolite crystals during the deoxygenation of nitrogen oxides with propene. We show that the interactions between the reactants and the active sites lead to an unusual strain distribution, confirmed by density functional theory simulations. These observations provide insights into the role of structural inhomogeneity in zeolites during catalysis and will assist the future design of zeolites for their applications.

20.
Nat Commun ; 9(1): 1917, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29765052

RESUMEN

The dynamics of liquid water feature a variety of time scales, ranging from extremely fast ballistic-like thermal motion, to slower molecular diffusion and hydrogen-bond rearrangements. Here, we utilize coherent X-ray pulses to investigate the sub-100 fs equilibrium dynamics of water from ambient conditions down to supercooled temperatures. This novel approach utilizes the inherent capability of X-ray speckle visibility spectroscopy to measure equilibrium intermolecular dynamics with lengthscale selectivity, by measuring oxygen motion in momentum space. The observed decay of the speckle contrast at the first diffraction peak, which reflects tetrahedral coordination, is attributed to motion on a molecular scale within the first 120 fs. Through comparison with molecular dynamics simulations, we conclude that the slowing down upon cooling from 328 K down to 253 K is not due to simple thermal ballistic-like motion, but that cage effects play an important role even on timescales over 25 fs due to hydrogen-bonding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA