Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cogn Affect Behav Neurosci ; 24(2): 325-348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200282

RESUMEN

Concerns about poor animal to human translation have come increasingly to the fore, in particular with regards to cognitive improvements in rodent models, which have failed to translate to meaningful clinical benefit in humans. This problem has been widely acknowledged, most recently in the field of Alzheimer's disease, although this issue pervades the spectrum of central nervous system (CNS) disorders, including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Consequently, recent efforts have focused on improving preclinical to clinical translation by incorporating more clinically analogous outcome measures of cognition, such as touchscreen-based assays, which can be employed across species, and have great potential to minimize the translational gap. For aging-related research, it also is important to incorporate model systems that facilitate the study of the long prodromal phase in which cognitive decline begins to emerge and which is a major limitation of short-lived species, such as laboratory rodents. We posit that to improve translation of cognitive function and dysfunction, nonhuman primate models, which have conserved anatomical and functional organization of the primate brain, are necessary to move the field of translational research forward and to bridge the translational gaps. The present studies describe the establishment of a comprehensive battery of touchscreen-based tasks that capture a spectrum of domains sensitive to detecting aging-related cognitive decline, which will provide the greatest benefit through longitudinal evaluation throughout the prolonged lifespan of the marmoset.


Asunto(s)
Envejecimiento , Callithrix , Investigación Biomédica Traslacional , Animales , Envejecimiento/fisiología , Investigación Biomédica Traslacional/métodos , Masculino , Cognición/fisiología , Femenino , Modelos Animales de Enfermedad , Pruebas Neuropsicológicas/normas , Trastornos del Conocimiento/diagnóstico
2.
Alzheimers Dement ; 20(3): 1753-1770, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105605

RESUMEN

INTRODUCTION: We investigated whether novel plasma biomarkers are associated with cognition, cognitive decline, and functional independence in activities of daily living across and within neurodegenerative diseases. METHODS: Glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), phosphorylated tau (p-tau)181 and amyloid beta (Aß)42/40 were measured using ultra-sensitive Simoa immunoassays in 44 healthy controls and 480 participants diagnosed with Alzheimer's disease/mild cognitive impairment (AD/MCI), Parkinson's disease (PD), frontotemporal dementia (FTD) spectrum disorders, or cerebrovascular disease (CVD). RESULTS: GFAP, NfL, and/or p-tau181 were elevated among all diseases compared to controls, and were broadly associated with worse baseline cognitive performance, greater cognitive decline, and/or lower functional independence. While GFAP, NfL, and p-tau181 were highly predictive across diseases, p-tau181 was more specific to the AD/MCI cohort. Sparse associations were found in the FTD and CVD cohorts and for Aß42/40 . DISCUSSION: GFAP, NfL, and p-tau181 are valuable predictors of cognition and function across common neurodegenerative diseases, and may be useful in specialized clinics and clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Cardiovasculares , Disfunción Cognitiva , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Humanos , Actividades Cotidianas , Péptidos beta-Amiloides , Ontario , Cognición , Biomarcadores , Proteínas tau
3.
J Physiol ; 601(1): 37-50, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35635793

RESUMEN

Neuroimaging studies implicate the ventromedial prefrontal cortex (vmPFC) in a wide range of emotional and cognitive functions, and changes in activity within vmPFC have been linked to the aetiology and successful treatment of depression. However, this is a large, structurally heterogeneous region and the extent to which this structural heterogeneity reflects functional heterogeneity remains unclear. Causal studies in animals should help address this question but attempts to map findings from vmPFC studies in rodents onto human imaging studies highlight cross-species discrepancies between structural homology and functional analogy. Bridging this gap, recent studies in marmosets - a species of new world monkey in which the overall organization of vmPFC is more like humans than that of rodents - have revealed that over-activation of the caudal subcallosal region of vmPFC, area 25, but not neighbouring area 32, heightens reactivity to negatively valenced stimuli whilst blunting responsivity to positively valenced stimuli. These co-occurring states resemble those seen in depressed patients, which are associated with increased activity in caudal subcallosal regions. In contrast, only reward blunting but not heightening of threat reactivity is seen following over-activation of the structurally homologous region in rodents. To further advance understanding of the role of vmPFC in the aetiology and treatment of depression, future work should focus on the behaviourally specific networks by which vmPFC regions have their effects, together with characterization of cross-species similarities and differences in function.


Asunto(s)
Regulación Emocional , Animales , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal/fisiología , Emociones/fisiología , Cognición , Callithrix
4.
Eur J Neurol ; 30(4): 920-933, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36692250

RESUMEN

BACKGROUND AND PURPOSE: The pathophysiology of Parkinson's disease (PD) negatively affects brain network connectivity, and in the presence of brain white matter hyperintensities (WMHs) cognitive and motor impairments seem to be aggravated. However, the role of WMHs in predicting accelerating symptom worsening remains controversial. The objective was to investigate whether location and segmental brain WMH burden at baseline predict cognitive and motor declines in PD after 2 years. METHODS: Ninety-eight older adults followed longitudinally from Ontario Neurodegenerative Diseases Research Initiative with PD of 3-8 years in duration were included. Percentages of WMH volumes at baseline were calculated by location (deep and periventricular) and by brain region (frontal, temporal, parietal, occipital lobes and basal ganglia + thalamus). Cognitive and motor changes were assessed from baseline to 2-year follow-up. Specifically, global cognition, attention, executive function, memory, visuospatial abilities and language were assessed as were motor symptoms evaluated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III, spatial-temporal gait variables, Freezing of Gait Questionnaire and Activities Specific Balance Confidence Scale. RESULTS: Regression analysis adjusted for potential confounders showed that total and periventricular WMHs at baseline predicted decline in global cognition (p < 0.05). Also, total WMH burden predicted the decline of executive function (p < 0.05). Occipital WMH volumes also predicted decline in global cognition, visuomotor attention and visuospatial memory declines (p < 0.05). WMH volumes at baseline did not predict motor decline. CONCLUSION: White matter hyperintensity burden at baseline predicted cognitive but not motor decline in early to mid-stage PD. The motor decline observed after 2 years in these older adults with PD is probably related to the primary neurodegenerative process than comorbid white matter pathology.


Asunto(s)
Disfunción Cognitiva , Trastornos Neurológicos de la Marcha , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Sustancia Blanca , Humanos , Anciano , Sustancia Blanca/patología , Enfermedades Neurodegenerativas/patología , Ontario , Imagen por Resonancia Magnética/métodos , Cognición/fisiología , Disfunción Cognitiva/patología
5.
Cereb Cortex ; 32(18): 4128-4140, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-35029670

RESUMEN

Substantial progress has been made studying morphological changes in brain regions during adolescence, but less is known of network-level changes in their relationship. Here, we compare covariance networks constructed from the correlation of morphometric volumes across 135 brain regions of marmoset monkeys in early adolescence and adulthood. Substantial shifts are identified in the topology of structural covariance networks in the prefrontal cortex (PFC) and temporal lobe. PFC regions become more structurally differentiated and segregated within their own local network, hypothesized to reflect increased specialization after maturation. In contrast, temporal regions show increased inter-hemispheric covariances that may underlie the establishment of distributed networks. Regionally selective coupling of structural and maturational covariance is revealed, with relatively weak coupling in transmodal association areas. The latter may be a consequence of continued maturation within adulthood, but also environmental factors, for example, family size, affecting brain morphology. Advancing our understanding of how morphological relationships within higher-order brain areas mature in adolescence deepens our knowledge of the developing brain's organizing principles.


Asunto(s)
Callithrix , Imagen por Resonancia Magnética , Animales , Encéfalo/anatomía & histología , Corteza Prefrontal , Lóbulo Temporal
6.
Cereb Cortex ; 32(7): 1319-1336, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34494095

RESUMEN

Structural and functional abnormalities of the orbitofrontal cortex (OFC) have been implicated in affective disorders that manifest anxiety-related symptoms. However, research into the functions of primate OFC has predominantly focused on reward-oriented rather than threat-oriented responses. To redress this imbalance, the present study performed a comprehensive analysis of the independent role of 2 distinct subregions of the central OFC (anterior area 11; aOFC and posterior area 13; pOFC) in the processing of distal and proximal threat. Temporary inactivation of both aOFC and pOFC heightened responses to distal threat in the form of an unknown human, but not to proximal threat assessed in a discriminative Pavlovian conditioning task. Inactivation of the aOFC, however, did unexpectedly blunt conditioned threat responses, although the effect was not valence-specific, as conditioned appetitive responses were similarly blunted and appeared restricted to a discriminative version of the task (when both CS- and CS+ are present within a session). Inactivation of the pOFC did not affect conditioned responses to either proximal threat or reward and basal cardiovascular activity was unaffected by manipulations of activity in either subregion. The results highlight the contribution of aOFC and pOFC to regulation of responses to more distal uncertain but not proximal, certain threat and reveal their opposing contribution to that of the immediately adjacent medial OFC, area 14.


Asunto(s)
Callithrix , Recompensa , Animales , Condicionamiento Clásico/fisiología , Lóbulo Frontal/fisiología , Corteza Prefrontal/fisiología
7.
Gerontology ; 69(8): 1002-1013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36966524

RESUMEN

INTRODUCTION: Identifying responsive outcome measures for assessing functional change related to cognition, communication, and quality of life for individuals with neurodegenerative disease is important for intervention design and clinical care. Goal Attainment Scaling (GAS) has been used as an outcome measure to formally develop and systematically measure incremental progress toward functional, patient-centered goals in clinical settings. Evidence suggests that GAS is reliable and feasible for use in older adult populations and in adult populations with cognitive impairment, but no review has assessed the suitability of GAS in older adults with neurodegenerative disease experiencing dementia or cognitive impairment, based on responsiveness. This study conducted a systematic review to evaluate the suitability of GAS as an outcome measure for older adult populations with neurodegenerative disease experiencing dementia or cognitive impairment, based on responsiveness. METHODS: The review was registered with PROSPERO and performed by searching ten electronic scientific databases (PubMed, Medline OVID, CINAHL, Cochrane, Embase, Web of Science, PsycINFO, Scopus, OTSeeker, REHABDATA) and four registries (Clinicaltrials.gov, Grey Literature Report, Mednar, OpenGrey). A summary measure of responsiveness (post-intervention minus pre-intervention mean GAS T-score) was compared across eligible studies using a random-effects meta-analysis. Risk of bias in included studies was assessed using the NIH Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group. RESULTS: 882 eligible articles were identified and screened by two independent reviewers. Ten studies met inclusion criteria for the final analysis. Of the ten included reports, 3 focus on all-cause dementia, 3 on multiple sclerosis, 1 on Parkinson's disease, 1 on mild cognitive impairment, 1 on Alzheimer's disease, and 1 on primary progressive aphasia. Responsiveness analyses showed pre- and post-intervention GAS goals were significantly different from zero (Z = 7.48, p < 0.001), with post-intervention GAS scores being higher than pre-intervention GAS scores. Three included studies showed a high risk of bias, 3 showed a moderate risk of bias, and 4 showed a low risk of bias. Overall risk of bias of included studies was rated as moderate. CONCLUSION: GAS showed an improvement in goal attainment across different dementia patient populations and intervention types. The overall moderate risk of bias suggests that while bias is present across included studies (e.g., small sample size, unblinded assessors), the observed effect likely represents the true effect. This suggests that GAS is responsive to functional change and may be suitable for use in older adult populations with neurodegenerative disease experiencing dementia or cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Demencia , Enfermedades Neurodegenerativas , Humanos , Anciano , Demencia/terapia , Calidad de Vida , Objetivos , Disfunción Cognitiva/terapia
8.
Proc Natl Acad Sci U S A ; 117(39): 24022-24031, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32817435

RESUMEN

The recently developed new genome-editing technologies, such as the CRISPR/Cas system, have opened the door for generating genetically modified nonhuman primate (NHP) models for basic neuroscience and brain disorders research. The complex circuit formation and experience-dependent refinement of the human brain are very difficult to model in vitro, and thus require use of in vivo whole-animal models. For many neurodevelopmental and psychiatric disorders, abnormal circuit formation and refinement might be at the center of their pathophysiology. Importantly, many of the critical circuits and regional cell populations implicated in higher human cognitive function and in many psychiatric disorders are not present in lower mammalian brains, while these analogous areas are replicated in NHP brains. Indeed, neuropsychiatric disorders represent a tremendous health and economic burden globally. The emerging field of genetically modified NHP models has the potential to transform our study of higher brain function and dramatically facilitate the development of effective treatment for human brain disorders. In this paper, we discuss the importance of developing such models, the infrastructure and training needed to maximize the impact of such models, and ethical standards required for using these models.


Asunto(s)
Experimentación Animal/ética , Modelos Animales de Enfermedad , Trastornos Mentales/genética , Enfermedades del Sistema Nervioso/genética , Primates/genética , Animales , Trastornos Mentales/fisiopatología , Enfermedades del Sistema Nervioso/fisiopatología , Neurociencias/ética , Neurociencias/métodos , Primates/fisiología
9.
Proc Natl Acad Sci U S A ; 117(40): 25116-25127, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958652

RESUMEN

The ventromedial prefrontal cortex (vmPFC) is a key brain structure implicated in mood and anxiety disorders, based primarily on evidence from correlational neuroimaging studies. Composed of a number of brain regions with distinct architecture and connectivity, dissecting its functional heterogeneity will provide key insights into the symptomatology of these disorders. Focusing on area 14, lying on the medial and orbital surfaces of the gyrus rectus, this study addresses a key question of causality. Do changes in area 14 activity induce changes in threat- and reward-elicited responses within the nonhuman primate, the common marmoset, similar to that seen in mood and anxiety disorders? Area 14 overactivation was found to induce heightened responsivity to uncertain, low-imminence threat while blunting cardiovascular and behavioral anticipatory arousal to high-value food reward. Conversely, inactivation enhanced the arousal to high-value reward cues while dampening the acquisition of cardiovascular and behavioral responses to a Pavlovian threat cue. Basal cardiovascular activity, including heart rate variability and sympathovagal balance, which are dysfunctional in mood and anxiety disorders, are insensitive to alterations in area 14 activity as is the extinction of conditioned threat responses. The distinct pattern of dysregulation compared to neighboring region area 25 highlights the heterogeneity of function within vmPFC and reveals how the effects of area 14 overactivation on positive and negative reactivity mirror symptoms of anhedonia and anxiety that are so often comorbid in mood disorders.


Asunto(s)
Ansiedad/diagnóstico por imagen , Mapeo Encefálico , Callithrix/fisiología , Corteza Prefrontal/diagnóstico por imagen , Animales , Ansiedad/fisiopatología , Condicionamiento Clásico/fisiología , Frecuencia Cardíaca/fisiología , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal/fisiología , Recompensa
10.
Alzheimers Dement ; 19(1): 226-243, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36318754

RESUMEN

INTRODUCTION: Understanding synergies between neurodegenerative and cerebrovascular pathologies that modify dementia presentation represents an important knowledge gap. METHODS: This multi-site, longitudinal, observational cohort study recruited participants across prevalent neurodegenerative diseases and cerebrovascular disease and assessed participants comprehensively across modalities. We describe univariate and multivariate baseline features of the cohort and summarize recruitment, data collection, and curation processes. RESULTS: We enrolled 520 participants across five neurodegenerative and cerebrovascular diseases. Median age was 69 years, median Montreal Cognitive Assessment score was 25, median independence in activities of daily living was 100% for basic and 93% for instrumental activities. Spousal study partners predominated; participants were often male, White, and more educated. Milder disease stages predominated, yet cohorts reflect clinical presentation. DISCUSSION: Data will be shared with the global scientific community. Within-disease and disease-agnostic approaches are expected to identify markers of severity, progression, and therapy targets. Sampling characteristics also provide guidance for future study design.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Neurodegenerativas , Humanos , Masculino , Anciano , Enfermedades Neurodegenerativas/epidemiología , Actividades Cotidianas , Ontario , Estudios de Cohortes , Estudios Longitudinales
11.
Artículo en Inglés | MEDLINE | ID: mdl-35633037

RESUMEN

OBJECTIVES: Caregiving burdens are a substantial concern in the clinical care of persons with neurodegenerative disorders. In the Ontario Neurodegenerative Disease Research Initiative, we used the Zarit's Burden Interview (ZBI) to examine: (1) the types of burdens captured by the ZBI in a cross-disorder sample of neurodegenerative conditions (2) whether there are categorical or disorder-specific effects on caregiving burdens, and (3) which demographic, clinical, and cognitive measures are related to burden(s) in neurodegenerative disorders? METHODS/DESIGN: N = 504 participants and their study partners (e.g., family, friends) across: Alzheimer's disease/mild cognitive impairment (AD/MCI; n = 120), Parkinson's disease (PD; n = 136), amyotrophic lateral sclerosis (ALS; n = 38), frontotemporal dementia (FTD; n = 53), and cerebrovascular disease (CVD; n = 157). Study partners provided information about themselves, and information about the clinical participants (e.g., activities of daily living (ADL)). We used Correspondence Analysis to identify types of caregiving concerns in the ZBI. We then identified relationships between those concerns and demographic and clinical measures, and a cognitive battery. RESULTS: We found three components in the ZBI. The first was "overall burden" and was (1) strongly related to increased neuropsychiatric symptoms (NPI severity r = 0.586, NPI distress r = 0.587) and decreased independence in ADL (instrumental ADLs r = -0.566, basic ADLs r = -0.43), (2) moderately related to cognition (MoCA r = -0.268), and (3) showed little-to-no differences between disorders. The second and third components together showed four types of caregiving concerns: current care of the person with the neurodegenerative disease, future care of the person with the neurodegenerative disease, personal concerns of study partners, and social concerns of study partners. CONCLUSIONS: Our results suggest that the experience of caregiving in neurodegenerative and cerebrovascular diseases is individualized and is not defined by diagnostic categories. Our findings highlight the importance of targeting ADL and neuropsychiatric symptoms with caregiver-personalized solutions.


Asunto(s)
Trastornos Cerebrovasculares , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Actividades Cotidianas , Cuidadores/psicología , Humanos , Ontario
12.
Cereb Cortex ; 31(10): 4765-4780, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34076234

RESUMEN

The midcingulate cortex (MCC) is associated with cognition and emotion regulation. Structural and correlational functional evidence suggests that rather than being homogenous, the MCC may have dissociable functions that can be mapped onto distinct subregions. In this study, we use the marmoset monkey to causally investigate the contributions of two proposed subregions of the MCC: the anterior and posterior midcingulate cortices (aMCC and pMCC) to behavioral and cardiovascular correlates of threat processing relevant to anxiety disorders. Transient inactivation of the aMCC decreased anxiety-like responses to a postencounter distal threat, namely an unfamiliar human intruder, while inactivation of the pMCC showed a mild but opposing effect. Furthermore, although inactivation of neither MCC subregions had any effect on basal cardiovascular activity, aMCC inactivation blunted the expression of both cardiovascular and behavioral conditioned responses to a predictable proximal threat (a rubber snake) during the extinction in a Pavlovian conditioning task, with pMCC inactivation having again an opposing effect, but primarily on the behavioral response. These findings suggest that the MCC is indeed functionally heterogeneous with regards to its role in threat processing, with aMCC providing a marked facilitative contribution to the expression of the emotional response to both proximal and distal threat.


Asunto(s)
Miedo/fisiología , Giro del Cíngulo/fisiología , Animales , Ansiedad/psicología , Conducta Animal , Mapeo Encefálico , Callithrix , Fenómenos Fisiológicos Cardiovasculares , Condicionamiento Clásico , Emociones , Femenino , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino
13.
Proc Natl Acad Sci U S A ; 116(52): 26297-26304, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31871181

RESUMEN

The ventromedial prefrontal cortex (vmPFC) is consistently implicated in the cognitive and emotional symptoms of many psychiatric disorders, but the causal mechanisms of its involvement remain unknown. In part, this is because of the poor characterization of the disorders and their symptoms, and the focus of experimental studies in animals on subcortical (rather than cortical) dysregulation. Moreover, even in those experimental studies that have focused on the vmPFC, the preferred animal model for such research has been the rodent, in which there are marked differences in the organization of this region to that seen in humans, and thus the extent of functional homology is unclear. There is also a paucity of well-defined behavioral paradigms suitable for translating disorder-relevant findings across species. With these considerations in mind, we discuss the value of nonhuman primates (NHPs) in bridging the translational gap between human and rodent studies. We focus on recent investigations into the involvement in reward and threat processing of 2 major regions of the vmPFC, areas 25 and 32 in NHPs and their anatomical homologs, the infralimbic and prelimbic cortex, in rodents. We highlight potential similarities, but also differences between species, and consider them in light of the extent to which anatomical homology reflects functional homology, the expansion of the PFC in human and NHPs, and most importantly how they can guide future studies to improve the translatability of findings from preclinical animal studies into the clinic.

14.
Proc Natl Acad Sci U S A ; 116(29): 14761-14768, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31266890

RESUMEN

Genetic variation in the serotonin transporter gene (SLC6A4) is associated with vulnerability to affective disorders and pharmacotherapy efficacy. We recently identified sequence polymorphisms in the common marmoset SLC6A4 repeat region (AC/C/G and CT/T/C) associated with individual differences in anxiety-like trait, gene expression, and response to antidepressants. The mechanisms underlying the effects of these polymorphisms are unknown, but a key mediator of serotonin action is the serotonin 2A receptor (5HT2A). Thus, we correlated 5HT2A binding potential (BP) and RNA gene expression in 16 SLC6A4 genotyped marmosets with responsivity to 5HT2A antagonism during the human intruder test of anxiety. Voxel-based analysis and RNA measurements showed a reduction in 5HT2A BP and gene expression specifically in the right posterior insula of individuals homozygous for the anxiety-related variant AC/C/G. These same marmosets displayed an anxiogenic, dose-dependent response to the human intruder after 5HT2A pharmacological antagonism, while CT/T/C individuals showed no effect. A voxel-based correlation analysis, independent of SLC6A4 genotype, revealed that 5HT2A BP in the adjacent right anterior insula and insula proisocortex was negatively correlated with trait anxiety scores. Moreover, 5HT2A BP in both regions was a good predictor of the size and direction of the acute emotional response to the human intruder threat after 5HT2A antagonism. Our findings suggest that genetic variation in the SLC6A4 repeat region may contribute to the trait anxious phenotype via neurochemical changes in brain areas implicated in interoceptive and emotional processing, with a critical role for the right insula 5HT2A in the regulation of affective responses to threat.


Asunto(s)
Ansiedad/genética , Conducta Animal/fisiología , Callithrix/fisiología , Corteza Cerebral/patología , Receptor de Serotonina 5-HT2A/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Animales , Ansiedad/patología , Ansiedad/psicología , Conducta Animal/efectos de los fármacos , Femenino , Fluorobencenos/administración & dosificación , Genotipo , Humanos , Inyecciones Intramusculares , Masculino , Modelos Animales , Piperidinas/administración & dosificación , Polimorfismo Genético , Regiones Promotoras Genéticas/genética , ARN/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/administración & dosificación , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Estrés Psicológico/genética , Estrés Psicológico/psicología
15.
Neuroimage ; 235: 118017, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33794355

RESUMEN

Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuroimagen/métodos , Animales , Humanos , Optogenética , Primates
16.
Annu Rev Psychol ; 71: 357-387, 2020 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-31622562

RESUMEN

Regions of the prefrontal and cingulate cortices play important roles in the regulation of behaviors elicited by threat. Dissecting out their differential involvement will greatly increase our understanding of the varied etiology of symptoms of anxiety. I review evidence for altered activity within the major divisions of the prefrontal cortex, including orbitofrontal, ventrolateral, dorsolateral, and ventromedial sectors, along with the anterior cingulate cortex in patients with clinical anxiety. This review is integrated with a discussion of current knowledge about the causal role of these different prefrontal and cingulate regions in threat-elicited behaviors from experimental studies in rodents and monkeys. I highlight commonalities and inconsistencies between species and discuss the current state of our translational success in relating findings across species. Finally, I identify key issues that, if addressed, may improve that success in the future.


Asunto(s)
Ansiedad/fisiopatología , Conducta Animal/fisiología , Miedo/fisiología , Giro del Cíngulo/fisiología , Corteza Prefrontal/fisiología , Animales , Humanos
17.
J Neurosci ; 39(16): 3094-3107, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30718320

RESUMEN

High-trait anxiety is a risk factor for the development of affective disorders and has been associated with decreased cardiovascular and behavioral responsivity to acute stressors in humans that may increase the risk of developing cardiovascular disease. Although human neuroimaging studies of high-trait anxiety reveals dysregulation in primate cingulate areas 25 and 32 and the anterior hippocampus (aHipp) and rodent studies reveal the importance of aHipp glutamatergic hypofunction, the causal involvement of aHipp glutamate and its interaction with these areas in the primate brain is unknown. Accordingly, we correlated marmoset trait anxiety scores to their postmortem aHipp glutamate levels and showed that low glutamate in the right aHipp is associated with high-trait anxiety in marmosets. Moreover, pharmacologically increasing aHipp glutamate reduced anxiety levels in highly anxious marmosets in two uncertainty-based tests of anxiety: exposure to a human intruder with uncertain intent and unpredictable loud noise. In the human intruder test, increasing aHipp glutamate decreased anxiety by increasing approach to the intruder. In the unpredictable threat test, animals showed blunted behavioral and cardiovascular responsivity after control infusions, which was normalized by increasing aHipp glutamate. However, this aHipp-mediated anxiolytic effect was blocked by simultaneous pharmacological inactivation of area 25, but not area 32, areas which when inactivated independently reduced and had no effect on anxiety, respectively. These findings provide causal evidence in male and female primates that aHipp glutamatergic hypofunction and its regulation by area 25 contribute to the behavioral and cardiovascular symptoms of endogenous high-trait anxiety.SIGNIFICANCE STATEMENT High-trait anxiety predisposes sufferers to the development of anxiety and depression. Although neuroimaging of these disorders and rodent modeling implicate dysregulation in hippocampal glutamate and the subgenual/perigenual cingulate cortices (areas 25/32), the causal involvement of these structures in endogenous high-trait anxiety and their interaction are unknown. Here, we demonstrate that increased trait anxiety in marmoset monkeys correlates with reduced hippocampal glutamate and that increasing hippocampal glutamate release in high-trait-anxious monkeys normalizes the aberrant behavioral and cardiovascular responsivity to potential threats. This normalization was blocked by simultaneous inactivation of area 25, but not area 32. These findings provide casual evidence in primates that hippocampal glutamatergic hypofunction regulates endogenous high-trait anxiety and the hippocampal-area 25 circuit is a potential therapeutic target.


Asunto(s)
Ansiedad/metabolismo , Conducta Animal/fisiología , Ácido Glutámico/metabolismo , Frecuencia Cardíaca/fisiología , Hipocampo/metabolismo , Aminoácidos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Bencilaminas/farmacología , Callithrix , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Ácidos Fosfínicos/farmacología , Xantenos/farmacología
18.
Cereb Cortex ; 29(11): 4818-4830, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30796800

RESUMEN

Affective disorders are associated with increased sensitivity to negative feedback that influences approach-avoidance decision making. Although neuroimaging studies of these disorders reveal dysregulation in primate cingulate areas 25 and 32 and the anterior hippocampus (aHipp), the causal involvement of these structures and their interaction in the primate brain is unknown. We therefore investigated the effects of localized pharmacological manipulations of areas 25 and 32 and/or the aHipp of the marmoset monkey on performance of an anxiolytic-sensitive instrumental decision-making task in which an approach-avoidance conflict is created by pairing a response with reward and punishment. During control infusions animals avoided punishment, but this bias was reduced by increasing glutamate release within the aHipp or area 32, and inactivation or 5-HT1a antagonism within area 25. Conversely, increasing glutamate release in area 25 enhanced punishment avoidance but, in contrast to previous reports, area 32 and aHipp inactivations had no effect. Simultaneous inactivation or 5-HT1a antagonism within area 25, but not area 32, abolished the reduced punishment avoidance seen after increasing aHipp glutamate. Besides providing causal evidence that these primate areas differentially regulate negative feedback sensitivity, this study links the decision-making deficits in affective disorders to aberrant aHipp-area 25 circuit activity.


Asunto(s)
Reacción de Prevención/fisiología , Conducta de Elección/fisiología , Toma de Decisiones/fisiología , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Castigo , Recompensa , Animales , Callithrix , Conflicto Psicológico , Femenino , Ácido Glutámico/fisiología , Masculino
19.
Cereb Cortex ; 29(1): 447-460, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30395188

RESUMEN

Fronto-striatal circuitry involving the orbitofrontal cortex has been identified as mediating successful reversal of stimulus-outcome contingencies. The region of the striatum that most contributes to reversal learning remains unclear, with studies in primates implicating both caudate nucleus and putamen. We trained four marmosets on a touchscreen-based serial reversal task and implanted each with cannulae targeting both putamen and caudate bilaterally. This allowed reversible inactivation of the two areas within the same monkeys, but across separate sessions, to directly investigate their respective contributions to reversal performance. Behavioral sensitivity to the GABAA agonist muscimol varied across subjects and between brain regions, so each marmoset received a range of doses. Intermediate doses of intra-putamen muscimol selectively impaired reversal performance, leaving the baseline discrimination phase unchanged. There was no effect of low doses and high doses were generally disruptive. By contrast, low doses of intra-caudate muscimol improved reversal performance, while high doses impaired both reversal and baseline discrimination performance. These data provide evidence for a specific role of the putamen in serial reversal learning, which may reflect the more habitual nature of repeated reversals using the same stimulus pair.


Asunto(s)
Aprendizaje Discriminativo/fisiología , Putamen/fisiología , Aprendizaje Inverso/fisiología , Animales , Callithrix , Masculino , Estimulación Luminosa/métodos
20.
Proc Natl Acad Sci U S A ; 114(20): E4075-E4084, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28461477

RESUMEN

Disorders of dysregulated negative emotion such as depression and anxiety also feature increased cardiovascular mortality and decreased heart-rate variability (HRV). These disorders are correlated with dysfunction within areas 25 and 32 of the ventromedial prefrontal cortex (vmPFC), but a causal relationship between dysregulation of these areas and such symptoms has not been demonstrated. Furthermore, cross-species translation is limited by inconsistent findings between rodent fear extinction and human neuroimaging studies of negative emotion. To reconcile these literatures, we applied an investigative approach to the brain-body interactions at the core of negative emotional dysregulation. We show that, in marmoset monkeys (a nonhuman primate that has far greater vmPFC homology to humans than rodents), areas 25 and 32 have causal yet opposing roles in regulating the cardiovascular and behavioral correlates of negative emotion. In novel Pavlovian fear conditioning and extinction paradigms, pharmacological inactivation of area 25 decreased the autonomic and behavioral correlates of negative emotion expectation, whereas inactivation of area 32 increased them via generalization. Area 25 inactivation also increased resting HRV. These findings are inconsistent with current theories of rodent/primate prefrontal functional similarity, and provide insight into the role of these brain regions in affective disorders. They demonstrate that area 32 hypoactivity causes behavioral generalization relevant to anxiety, and that area 25 is a causal node governing the emotional and cardiovascular symptomatology relevant to anxiety and depression.


Asunto(s)
Callithrix/fisiología , Miedo/fisiología , Corteza Prefrontal/fisiología , Animales , Condicionamiento Psicológico , Femenino , Frecuencia Cardíaca , Masculino , Sistema Nervioso Parasimpático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA