Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Diabetes Care ; 45(1): 186-193, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34794973

RESUMEN

OBJECTIVE: Achieving optimal glycemic control for many individuals with type 1 diabetes (T1D) remains challenging, even with the advent of newer management tools, including continuous glucose monitoring (CGM). Modern management of T1D generates a wealth of data; however, use of these data to optimize glycemic control remains limited. We evaluated the impact of a CGM-based decision support system (DSS) in patients with T1D using multiple daily injections (MDI). RESEARCH DESIGN AND METHODS: The studied DSS included real-time dosing advice and retrospective therapy optimization. Adults and adolescents (age >15 years) with T1D using MDI were enrolled at three sites in a 14-week randomized controlled trial of MDI + CGM + DSS versus MDI + CGM. All participants (N = 80) used degludec basal insulin and Dexcom G5 CGM. CGM-based and patient-reported outcomes were analyzed. Within the DSS group, ad hoc analysis further contrasted active versus nonactive DSS users. RESULTS: No significant differences were detected between experimental and control groups (e.g., time in range [TIR] +3.3% with CGM vs. +4.4% with DSS). Participants in both groups reported lower HbA1c (-0.3%; P = 0.001) with respect to baseline. While TIR may have improved in both groups, it was statistically significant only for DSS; the same was apparent for time spent <60 mg/dL. Active versus nonactive DSS users showed lower risk of and exposure to hypoglycemia with system use. CONCLUSIONS: Our DSS seems to be a feasible option for individuals using MDI, although the glycemic benefits associated with use need to be further investigated. System design, therapy requirements, and target population should be further refined prior to use in clinical care.


Asunto(s)
Diabetes Mellitus Tipo 1 , Adolescente , Adulto , Glucemia , Automonitorización de la Glucosa Sanguínea/métodos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Estudios Retrospectivos
2.
Diabetes Technol Ther ; 22(8): 594-601, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32119790

RESUMEN

Objective: To assess the safety and efficacy of a simplified initialization for the Tandem t:slim X2 Control-IQ hybrid closed-loop system, using parameters based on total daily insulin ("MyTDI") in adolescents with type 1 diabetes under usual activity and during periods of increased exercise. Research Design and Methods: Adolescents with type 1 diabetes 12-18 years of age used Control-IQ for 5 days at home using their usual parameters. Upon arrival at a 60-h ski camp, participants were randomized to either continue Control-IQ using their home settings or to reinitialize Control-IQ with MyTDI parameters. Control-IQ use continued for 5 days following camp. The effect of MyTDI on continuous glucose monitoring outcomes were analyzed using repeated measures analysis of variance (ANOVA): baseline, camp, and at home. Results: Twenty participants were enrolled and completed the study; two participants were excluded from the analysis due to absence from ski camp (1) and illness (1). Time in range was similar between both groups at home and camp. A tendency to higher time <70 mg/dL in the MyTDI group was present but only during camp (median 3.8% vs. 1.4%, P = 0.057). MyTDI users with bolus/TDI ratios >40% tended to show greater time in the euglycemic range improvements between baseline and home than users with ratios <40% (+16.3% vs. -9.0%, P = 0.012). All participants maintained an average of 95% time in closed loop (84.1%-100%). Conclusions: MyTDI is a safe, effective, and easy way to determine insulin parameters for use in the Control-IQ artificial pancreas. Future modifications to account for the influence of carbohydrate intake on MyTDI calculations might further improve time in range.


Asunto(s)
Diabetes Mellitus Tipo 1 , Sistemas de Infusión de Insulina , Páncreas Artificial , Adolescente , Glucemia , Automonitorización de la Glucosa Sanguínea , Estudios Cruzados , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico
3.
Diabetes Technol Ther ; 21(6): 356-363, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31095423

RESUMEN

Background: Typically, closed-loop control (CLC) studies excluded patients with significant hypoglycemia. We evaluated the effectiveness of hybrid CLC (HCLC) versus sensor-augmented pump (SAP) in reducing hypoglycemia in this high-risk population. Methods: Forty-four subjects with type 1 diabetes, 25 women, 37 ± 2 years old, HbA1c 7.4% ± 0.2% (57 ± 1.5 mmol/mol), diabetes duration 19 ± 2 years, on insulin pump, were enrolled at the University of Virginia (N = 33) and Stanford University (N = 11). Eligibility: increased risk of hypoglycemia confirmed by 1 week of blinded continuous glucose monitor (CGM); randomized to 4 weeks of home use of either HCLC or SAP. Primary/secondary outcomes: risk for hypoglycemia measured by the low blood glucose index (LBGI)/CGM-based time in ranges. Results: Values reported: mean ± standard deviation. From baseline to the final week of study: LBGI decreased more on HCLC (2.51 ± 1.17 to 1.28 ± 0.5) than on SAP (2.1 ± 1.05 to 1.79 ± 0.98), P < 0.001; percent time below 70 mg/dL (3.9 mmol/L) decreased on HCLC (7.2% ± 5.3% to 2.0% ± 1.4%) but not on SAP (5.8% ± 4.7% to 4.8% ± 4.5%), P = 0.001; percent time within the target range 70-180 mg/dL (3.9-10 mmol/L) increased on HCLC (67.8% ± 13.5% to 78.2% ± 10%) but decreased on SAP (65.6% ± 12.9% to 59.6% ± 16.5%), P < 0.001; percent time above 180 mg/dL (10 mmol/L) decreased on HCLC (25.1% ± 15.3% to 19.8% ± 10.1%) but increased on SAP (28.6% ± 14.6% to 35.6% ± 17.6%), P = 0.009. Mean glucose did not change significantly on HCLC (144.9 ± 27.9 to 143.8 ± 14.4 mg/dL [8.1 ± 1.6 to 8.0 ± 0.8 mmol/L]) or SAP (152.5 ± 24.3 to 162.4 ± 28.2 [8.5 ± 1.4 to 9.0 ± 1.6]), P = ns. Conclusions: Compared with SAP therapy, HCLC reduced the risk and frequency of hypoglycemia, while improving time in target range and reducing hyperglycemia in people at moderate to high risk of hypoglycemia.


Asunto(s)
Automonitorización de la Glucosa Sanguínea/instrumentación , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diseño de Equipo/métodos , Hipoglucemia/prevención & control , Sistemas de Infusión de Insulina , Adulto , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea/métodos , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Femenino , Humanos , Hiperglucemia/inducido químicamente , Hipoglucemia/etiología , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Masculino
4.
Diabetes Technol Ther ; 20(8): 531-540, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29979618

RESUMEN

BACKGROUND: Glucose variability (GV) remains a key limiting factor in the success of diabetes management. While new technologies, for example, accurate continuous glucose monitoring (CGM) and connected insulin delivery devices, are now available, current treatment standards fail to leverage the wealth of information generated. Expert systems, from automated insulin delivery to advisory systems, are a key missing element to richer, more personalized, glucose management in diabetes. METHODS: Twenty four subjects with type 1 diabetes mellitus (T1DM), 15 women, 37 ± 11 years of age, hemoglobin A1c 7.2% ± 1%, total daily insulin (TDI) 46.7 ± 22.3 U, using either an insulin pump or multiple daily injections with carbohydrate counting, completed two randomized crossover 48-h visits at the University of Virginia, wearing Dexcom G4 CGM, and using either usual care or the UVA decision support system (DSS). DSS consisted of a combination of automated insulin titration, bolus calculation, and CHO treatment advice. During each admission, participants were exposed to a variety of meal sizes and contents and two 45-min bouts of exercise. GV and glucose control were assessed using CGM. RESULTS: The use of DSS significantly reduced GV (coefficient of variation: 0.36 ± 08. vs. 0.33 ± 0.06, P = 0.045) while maintaining glycemic control (average CGM: 155.2 ± 27.1 mg/dL vs. 155.2 ± 23.2 mg/dL), by reducing hypoglycemia exposure (%<70 mg/dL: 3.8% ± 4.6% vs. 1.8% ± 2%, P = 0.018), with nonsignificant trends toward reduction of significant hyperglycemia overnight (%>250 mg/dL: 5.3% ± 9.5% vs. 1.9% ± 4.6%) and at mealtime (11.3% ± 14.8% vs. 5.8% ± 9.1%). CONCLUSIONS: A CGM/insulin informed advisory system proved to be safe and feasible in a cohort of 24 T1DM subjects. Use of the system may result in reduced GV and improved protection against hypoglycemia.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Adolescente , Adulto , Automonitorización de la Glucosa Sanguínea/instrumentación , Niño , Estudios Cruzados , Sistemas de Apoyo a Decisiones Clínicas , Diabetes Mellitus Tipo 1/sangre , Relación Dosis-Respuesta a Droga , Femenino , Hemoglobina Glucada/análisis , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Masculino , Persona de Mediana Edad , Calidad de Vida , Resultado del Tratamiento , Adulto Joven
5.
Diabetes Care ; 40(12): 1644-1650, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28855239

RESUMEN

OBJECTIVE: Intense exercise is a major challenge to the management of type 1 diabetes (T1D). Closed-loop control (CLC) systems (artificial pancreas) improve glycemic control during limited intensity and short duration of physical activity (PA). However, CLC has not been tested during extended vigorous outdoor exercise common among adolescents. RESEARCH DESIGN AND METHODS: Skiing presents unique metabolic challenges: intense prolonged PA, cold, altitude, and stress/fear/excitement. In a randomized controlled trial, 32 adolescents with T1D (ages 10-16 years) participated in a 5-day ski camp (∼5 h skiing/day) at two sites: Wintergreen, VA, and Breckenridge, CO. Participants were randomized to the University of Virginia CLC system or remotely monitored sensor-augmented pump (RM-SAP). The CLC and RM-SAP groups were coarsely paired by age and hemoglobin A1c (HbA1c). All subjects were remotely monitored 24 h per day by the study physicians and clinical team. RESULTS: Compared with physician-monitored open loop, percent time in range (70-180 mg/dL) improved using CLC: 71.3 vs. 64.7% (+6.6% [95% CI 1-12]; P = 0.005), with maximum effect late at night. Hypoglycemia exposure and carbohydrate treatments were improved overall (P = 0.001 and P = 0.007) and during the daytime with strong ski level effects (P = 0.0001 and P = 0.006); ski/snowboard proficiency was balanced between groups but with a very strong site effect: naive in Virginia and experienced in Colorado. There was no adverse event associated with CLC; the participants' feedback was overwhelmingly positive. CONCLUSIONS: CLC in adolescents with T1D improved glycemic control and reduced exposure to hypoglycemia during prolonged intensive winter sport activities, despite the added challenges of cold and altitude.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/terapia , Ejercicio Físico , Páncreas Artificial , Esquí , Adolescente , Glucemia/metabolismo , Índice de Masa Corporal , Niño , Frío , Colorado , Diabetes Mellitus Tipo 1/sangre , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemia/etiología , Hipoglucemia/terapia , Estaciones del Año , Resultado del Tratamiento , Virginia
6.
Diabetes Technol Ther ; 19(5): 293-298, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28426239

RESUMEN

BACKGROUND: Young children 5-8 years old with type 1 diabetes (T1D) exhibit clear needs for improved glycemic control but may be limited in their ability to safely interact with an artificial pancreas system. Our goal was to evaluate the safety and performance of an artificial pancreas (AP) system among young children with T1D. RESEARCH DESIGN AND METHODS: In a randomized, crossover trial, children with T1D age 5-8 years were enrolled to receive on separate study periods (in random order) either the UVa AP using the DiAs Control Platform software with child-resistant lock-out screens (followed as an out-patient admission) or their usual insulin pump+continuous glucose monitor (CGM) care at home. Hypoglycemic events and CGM tracings were compared between the two 68-h study periods. All analyses were adjusted for level of physical activity as tracked using Fitbit devices. RESULTS: Twelve participants (median age 7 years, n = 6 males) completed the trial. Compared to home care, the AP admission resulted in increased time with blood glucose (BG) 70-180 mg/dL (73% vs. 47%) and lower mean BG (152 mg/dL vs. 190 mg/dL), both P < 0.001 after adjustment for activity. Occurrence of hypoglycemia was similar between sessions without differences in time <70 mg/dL (AP 1.1% ± 1.1%; home 1.6% ± 1.2%). There were no adverse events during the AP or home study periods. CONCLUSIONS: Use of an AP in young children was safe and resulted in improved mean BG without increased hypoglycemia. This suggests that AP use in young children is safe and improves overall diabetes control. ClinicalTrials.gov registration number: NCT02750267.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Tipo 1/terapia , Hiperglucemia/prevención & control , Hipoglucemia/prevención & control , Páncreas Artificial , Actividades Cotidianas , Niño , Conducta Infantil , Preescolar , Seguridad Computacional , Estudios Cruzados , Diabetes Mellitus Tipo 1/sangre , Ejercicio Físico , Estudios de Factibilidad , Femenino , Monitores de Ejercicio , Hospitales Universitarios , Humanos , Hipoglucemia/inducido químicamente , Masculino , Servicio Ambulatorio en Hospital , Páncreas Artificial/efectos adversos , Virginia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA