Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Cell ; 59(6): 776-792.e11, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38359834

RESUMEN

Human trophoblast stem cells (hTSCs) and related trophoblast organoids are state-of-the-art culture systems that facilitate the study of trophoblast development and human placentation. Using single-cell transcriptomics, we evaluate how organoids derived from freshly isolated first-trimester trophoblasts or from established hTSC cell lines reproduce developmental cell trajectories and transcriptional regulatory processes defined in vivo. Although organoids from primary trophoblasts and hTSCs overall model trophoblast differentiation with accuracy, specific features related to trophoblast composition, trophoblast differentiation, and transcriptional drivers of trophoblast development show levels of misalignment. This is best illustrated by the identification of an expanded progenitor state in stem cell-derived organoids that is nearly absent in vivo and transcriptionally shares both villous cytotrophoblast and extravillous trophoblast characteristics. Together, this work provides a comprehensive resource that identifies strengths and limitations of current trophoblast organoid platforms.


Asunto(s)
Placenta , Trofoblastos , Embarazo , Femenino , Humanos , Placenta/metabolismo , Placentación , Células Madre , Diferenciación Celular , Organoides/metabolismo
2.
iScience ; 27(2): 109047, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38357671

RESUMEN

Molecular quantitative trait loci (QTLs) allow us to understand the biology captured in genome-wide association studies (GWASs). The placenta regulates fetal development and shows sex differences in DNA methylation. We therefore hypothesized that placental methylation QTL (mQTL) explain variation in genetic risk for childhood onset traits, and that effects differ by sex. We analyzed 411 term placentas from two studies and found 49,252 methylation (CpG) sites with mQTL and 2,489 CpG sites with sex-dependent mQTL. All mQTL were enriched in regions that typically affect gene expression in prenatal tissues. All mQTL were also enriched in GWAS results for growth- and immune-related traits, but male- and female-specific mQTL were more enriched than cross-sex mQTL. mQTL colocalized with trait loci at 777 CpG sites, with 216 (28%) specific to males or females. Overall, mQTL specific to male and female placenta capture otherwise overlooked variation in childhood traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA