Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207626

RESUMEN

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Asunto(s)
Relojes Circadianos , Proteínas Circadianas Period , Animales , Humanos , Fosforilación , Retroalimentación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismo
2.
Syst Biol ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37941464

RESUMEN

For much of terrestrial biodiversity, the evolutionary pathways of adaptation from marine ancestors are poorly understood, and have usually been viewed as a binary trait. True crabs, the decapod crustacean infraorder Brachyura, comprise over 7,600 species representing a striking diversity of morphology and ecology, including repeated adaptation to non-marine habitats. Here, we reconstruct the evolutionary history of Brachyura using new and published sequences of 10 genes for 344 tips spanning 88 of 109 brachyuran families. Using 36 newly vetted fossil calibrations, we infer that brachyurans most likely diverged in the Triassic, with family-level splits in the late Cretaceous and early Paleogene. By contrast, the root age is underestimated with automated sampling of 328 fossil occurrences explicitly incorporated into the tree prior, suggesting such models are a poor fit under heterogeneous fossil preservation. We apply recently defined trait-by-environment associations to classify a gradient of transitions from marine to terrestrial lifestyles. We estimate that crabs left the marine environment at least seven and up to 17 times convergently, and returned to the sea from non-marine environments at least twice. Although the most highly terrestrial- and many freshwater-adapted crabs are concentrated in Thoracotremata, Bayesian threshold models of ancestral state reconstruction fail to identify shifts to higher terrestrial grades due to the degree of underlying change required. Lineages throughout our tree inhabit intertidal and marginal marine environments, corroborating the inference that the early stages of terrestrial adaptation have a lower threshold to evolve. Our framework and extensive new fossil and natural history datasets will enable future comparisons of non-marine adaptation at the morphological and molecular level. Crabs provide an important window into the early processes of adaptation to novel environments, and different degrees of evolutionary constraint that might help predict these pathways.

3.
J Arthroplasty ; 39(4): 921-926, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37852444

RESUMEN

BACKGROUND: A consensus has not been reached regarding the optimal timing of elective total knee arthroplasty (TKA) following a stroke. The purpose of this study was to examine the optimal period between stroke and TKA to minimize complications. Specifically, we assessed: (1) medical and surgical complications; (2) timing of stroke and TKA; (3) associated risk factors. METHODS: A national database identified 69,815 TKA patients that were separated into 6 exclusive cohorts using a stratum likelihood ratio: no stroke (n = 20,000), stroke within 6 (n = 17,764), 12 (n = 10,338), 18 (n = 8,370), 24 (n = 7,121), and 30 months (n = 6,222) prior to TKA. We analyzed 90-day, 1-year, and 2-year complications in each subgroup. Multivariate analyses were used to identify risk factors for periprosthetic joint infection (PJI). RESULTS: The multivariate regression model identified that patients with a stroke within 6 months of TKA had increased risk of PJI at all time points (P < .001). Also, stroke 12 to 18 months before TKA elevated PJI risk at 1 and 2 years (all P < .021), while those over 18 months did not show a significant risk compared to controls (P > .067). CONCLUSIONS: Stroke prior to TKA was associated with an increased risk of postoperative complications, specifically PJI. We recommend a minimum of 6 months between stroke and TKA, with 18 months offering the lowest risk.


Asunto(s)
Artritis Infecciosa , Artroplastia de Reemplazo de Rodilla , Infecciones Relacionadas con Prótesis , Accidente Cerebrovascular , Humanos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Infecciones Relacionadas con Prótesis/etiología , Infecciones Relacionadas con Prótesis/complicaciones , Factores de Riesgo , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología , Estudios Retrospectivos , Artritis Infecciosa/etiología
4.
Environ Sci Technol ; 55(12): 8203-8214, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34081443

RESUMEN

Air pollution exposure is a risk factor for arrhythmia. The atrioventricular (AV) conduction axis is key for the passage of electrical signals to ventricles. We investigated whether environmental nanoparticles (NPs) reach the AV axis and whether they are associated with ultrastructural cell damage. Here, we demonstrate the detection of the shape, size, and composition of NPs by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 10 subjects from Metropolitan Mexico City (MMC) with a mean age of 25.3 ± 5.9 and a 71-year-old subject without cardiac pathology. We found that in every case, Fe, Ti, Al, Hg, Cu, Bi, and/or Si spherical or acicular NPs with a mean size of 36 ± 17 nm were present in the AV axis in situ, freely and as conglomerates, within the mitochondria, sarcomeres, lysosomes, lipofuscin, and/or intercalated disks and gap junctions of Purkinje and transitional cells, telocytes, macrophages, endothelium, and adjacent atrial and ventricular fibers. Erythrocytes were found to transfer NPs to the endothelium. Purkinje fibers with increased lysosomal activity and totally disordered myofilaments and fragmented Z-disks exhibited NP conglomerates in association with gap junctions and intercalated disks. AV conduction axis pathology caused by environmental NPs is a plausible and modifiable risk factor for understanding common arrhythmias and reentrant tachycardia. Anthropogenic, industrial, e-waste, and indoor NPs reach pacemaker regions, thereby increasing potential mechanisms that disrupt the electrical impulse pathways of the heart. The cardiotoxic, oxidative, and abnormal electric performance effects of NPs in pacemaker locations warrant extensive research. Cardiac arrhythmias associated with nanoparticle effects could be preventable.


Asunto(s)
Residuos Electrónicos , Mercurio , Nanopartículas , Taquicardia por Reentrada en el Nodo Atrioventricular , Anciano , Arritmias Cardíacas/inducido químicamente , Nodo Atrioventricular , Humanos , Residuos Industriales , México , Titanio
5.
Environ Res ; 183: 109137, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32006765

RESUMEN

Exposures to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards are associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) youth have life time exposures to PM2.5 and O3 above standards. We focused on MMC residents ≤30 years and reviewed 134 consecutive autopsies of subjects age 20.03 ± 6.38 y (range 11 months to 30 y), the staging of Htau and ß amyloid, the lifetime cumulative PM2.5 (CPM 2.5) and the impact of the Apolipoprotein E (APOE) 4 allele, the most prevalent genetic risk for AD. We also reviewed the results of the Montreal Cognitive Assessment (MoCA) and the brainstem auditory evoked potentials (BAEPs) in clinically healthy young cohorts. Mobile sources, particularly from non-regulated diesel vehicles dominate the MMC pollutant emissions exposing the population to PM2.5 concentrations above WHO and EPA standards. Iron-rich,magnetic, highly oxidative, combustion and friction-derived nanoparticles (CFDNPs) are measured in the brain of every MMC resident. Progressive development of Alzheimer starts in childhood and in 99.25% of 134 consecutive autopsies ≤30 years we can stage the disease and its progression; 66% of ≤30 years urbanites have cognitive impairment and involvement of the brainstem is reflected by auditory central dysfunction in every subject studied. The average age for dementia using MoCA is 20.6 ± 3.4 y. APOE4 vs 3 carriers have 1.26 higher odds of committing suicide. PM2.5 and CFDNPs play a key role in the development of neuroinflammation and neurodegeneration in young urbanites. A serious health crisis is in progress with social, educational, judicial, economic and overall negative health impact for 25 million residents. Understanding the neural circuitry associated with the earliest cognitive and behavioral manifestations of AD is needed. Air pollution control should be prioritised-including the regulation of diesel vehicles- and the first two decades of life ought to be targeted for neuroprotective interventions. Defining paediatric environmental, nutritional, metabolic and genetic risk factor interactions is a multidisciplinary task of paramount importance to prevent Alzheimer's disease. Current and future generations are at risk.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedad de Alzheimer , Adolescente , Contaminantes Atmosféricos/toxicidad , Enfermedad de Alzheimer/epidemiología , Niño , Ciudades , Humanos , México/epidemiología , Material Particulado
6.
Environ Res ; 191: 110139, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32888951

RESUMEN

Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, ɑ synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas de Magnetita , Nanotubos , Tronco Encefálico , Niño , Ciudades , Tracto Gastrointestinal , Humanos , México , Agregado de Proteínas , Titanio/toxicidad , Adulto Joven , alfa-Sinucleína
7.
Environ Res ; 183: 109226, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32045727

RESUMEN

Exposure to air pollutants is associated with an increased risk of developing Alzheimer's disease (AD). AD pathological hallmarks and cognitive deficits are documented in children and young adults in polluted cities (e.g. Metropolitan Mexico City, MMC). Iron-rich combustion- and friction-derived nanoparticles (CFDNPs) that are abundantly present in airborne particulate matter pollution have been detected in abundance in the brains of young urbanites. Epigenetic gene regulation has emerged as a candidate mechanism linking exposure to air pollution and brain diseases. A global decrease of the repressive histone post-translational modifications (HPTMs) H3K9me2 and H3K9me3 (H3K9me2/me3) has been described both in AD patients and animal models. Here, we evaluated nuclear levels of H3K9me2/me3 and the DNA double-strand-break marker γ-H2AX by immunostaining in post-mortem prefrontal white matter samples from 23 young adults (age 29 ± 6 years) who resided in MMC (n = 13) versus low-pollution areas (n = 10). Lower H3K9me2/me3 and higher γ-H2A.X staining were present in MMC urbanites, who also displayed the presence of hyperphosphorylated tau and amyloid-ß (Aß) plaques. Transmission electron microscopy revealed abundant CFDNPs in neuronal, glial and endothelial nuclei in MMC residents' frontal samples. In addition, mice exposed to particulate air pollution (for 7 months) in urban Santiago (Chile) displayed similar brain impacts; reduced H3K9me2/me3 and increased γ-H2A.X staining, together with increased levels of AD-related tau phosphorylation. Together, these findings suggest that particulate air pollution, including metal-rich CFDNPs, impairs brain chromatin silencing and reduces DNA integrity, increasing the risk of developing AD in young individuals exposed to high levels of particulate air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedad de Alzheimer , Daño del ADN , Material Particulado/toxicidad , Contaminantes Atmosféricos/toxicidad , Enfermedad de Alzheimer/epidemiología , Animales , Encéfalo , Niño , Chile , Cromatina/efectos de los fármacos , Ciudades , Daño del ADN/efectos de los fármacos , Epigénesis Genética , Silenciador del Gen , Humanos , México , Ratones , Adulto Joven
8.
Environ Res ; 176: 108574, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31299618

RESUMEN

Redox-active, strongly magnetic, combustion and friction-derived nanoparticles (CFDNPs) are abundant in particulate matter air pollution. Urban children and young adults with Alzheimer disease Continuum have higher numbers of brain CFDNPs versus clean air controls. CFDNPs surface charge, dynamic magnetic susceptibility, iron content and redox activity contribute to ROS generation, neurovascular unit (NVU), mitochondria, and endoplasmic reticulum (ER) damage, and are catalysts for protein misfolding, aggregation and fibrillation. CFDNPs respond to external magnetic fields and are involved in cell damage by agglomeration/clustering, magnetic rotation and/or hyperthermia. This review focus in the interaction of CFDNPs, nanomedicine and industrial NPs with biological systems and the impact of portals of entry, particle sizes, surface charge, biomolecular corona, biodistribution, mitochondrial dysfunction, cellular toxicity, anterograde and retrograde axonal transport, brain dysfunction and pathology. NPs toxicity information come from researchers synthetizing particles and improving their performance for drug delivery, drug targeting, magnetic resonance imaging and heat mediators for cancer therapy. Critical information includes how these NPs overcome all barriers, the NPs protein corona changes as they cross the NVU and the complexity of NPs interaction with soluble proteins and key organelles. Oxidative, ER and mitochondrial stress, and a faulty complex protein quality control are at the core of Alzheimer and Parkinson's diseases and NPs mechanisms of action and toxicity are strong candidates for early development and progression of both fatal diseases. Nanoparticle exposure regardless of sources carries a high risk for the developing brain homeostasis and ought to be included in the AD and PD research framework.


Asunto(s)
Enfermedad de Alzheimer/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Nanopartículas , Enfermedad de Parkinson/epidemiología , Fricción , Humanos , Distribución Tisular
9.
Environ Res ; 176: 108567, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31344533

RESUMEN

Air pollution is a risk factor for cardiovascular and Alzheimer's disease (AD). Iron-rich, strongly magnetic, combustion- and friction-derived nanoparticles (CFDNPs) are abundant in particulate air pollution. Metropolitan Mexico City (MMC) young residents have abundant brain CFDNPs associated with AD pathology. We aimed to identify if magnetic CFDNPs are present in urbanites' hearts and associated with cell damage. We used magnetic analysis and transmission electron microscopy (TEM) to identify heart CFDNPs and measured oxidative stress (cellular prion protein, PrPC), and endoplasmic reticulum (ER) stress (glucose regulated protein, GRP78) in 72 subjects age 23.8 ±â€¯9.4y: 63 MMC residents, with Alzheimer Continuum vs 9 controls. Magnetite/maghemite nanoparticles displaying the typical rounded crystal morphologies and fused surface textures of CFDNPs were more abundant in MMC residents' hearts. NPs, ∼2-10 × more abundant in exposed vs controls, were present inside mitochondria in ventricular cardiomyocytes, in ER, at mitochondria-ER contact sites (MERCs), intercalated disks, endothelial and mast cells. Erythrocytes were identified transferring 'hitchhiking' NPs to activated endothelium. Magnetic CFDNP concentrations and particle numbers ranged from 0.2 to 1.7 µg/g and ∼2 to 22 × 109/g, respectively. Co-occurring with cardiomyocyte NPs were abnormal mitochondria and MERCs, dilated ER, and lipofuscin. MMC residents had strong left ventricular PrPC and bi-ventricular GRP78 up-regulation. The health impact of up to ∼22 billion magnetic NPs/g of ventricular tissue are likely reflecting the combination of surface charge, ferrimagnetism, and redox activity, and includes their potential for disruption of the heart's electrical impulse pathways, hyperthermia and alignment and/or rotation in response to magnetic fields. Exposure to solid NPs appears to be directly associated with early and significant cardiac damage. Identification of strongly magnetic CFDNPs in the hearts of children and young adults provides an important novel layer of information for understanding CVD pathogenesis emphasizing the urgent need for prioritization of particulate air pollution control.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Miocardio/metabolismo , Nanopartículas/metabolismo , Contaminación del Aire/estadística & datos numéricos , Ciudades , Chaperón BiP del Retículo Endoplásmico , Exposición a Riesgos Ambientales/estadística & datos numéricos , Fricción , Corazón , Humanos , Fenómenos Magnéticos , México , Material Particulado
10.
Environ Res ; 166: 348-362, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29935448

RESUMEN

There is growing evidence that air pollution is a risk factor for a number of neurodegenerative diseases, most notably Alzheimer's (AD) and Parkinson's (PD). It is generally assumed that the pathology of these diseases arises only later in life and commonly begins within olfactory eloquent pathways prior to the onset of the classical clinical symptoms. The present study demonstrates that chronic exposure to high levels of air pollution results in AD- and PD-related pathology within the olfactory bulbs of children and relatively young adults ages 11 months to 40 years. The olfactory bulbs (OBs) of 179 residents of highly polluted Metropolitan Mexico City (MMC) were evaluated for AD- and alpha-synuclein-related pathology. Even in toddlers, hyperphosphorylated tau (hTau) and Lewy neurites (LN) were identified in the OBs. By the second decade, 84% of the bulbs exhibited hTau (48/57), 68% LNs and vascular amyloid (39/57) and 36% (21/57) diffuse amyloid plaques. OB active endothelial phagocytosis of red blood cell fragments containing combustion-derived nanoparticles (CDNPs) and the neurovascular unit damage were associated with myelinated and unmyelinated axonal damage. OB hTau neurites were associated mostly with pretangle stages 1a and 1b in subjects ≤ 20 years of age, strongly suggesting olfactory deficits could potentially be an early guide of AD pretangle subcortical and cortical hTau. APOE4 versus APOE3 carriers were 6-13 times more likely to exhibit OB vascular amyloid, neuronal amyloid accumulation, alpha-synuclein aggregates, hTau neurofibrillary tangles, and neurites. Remarkably, APOE4 carriers were 4.57 times more likely than non-carriers to die by suicide. The present findings, along with previous data that over a third of clinically healthy MMC teens and young adults exhibit low scores on an odor identification test, support the concept that olfactory testing may aid in identifying young people at high risk for neurodegenerative diseases. Moreover, results strongly support early neuroprotective interventions in fine particulate matter (PM2.5) and CDNP's exposed individuals ≤ 20 years of age, and the critical need for air pollution control.


Asunto(s)
Contaminación del Aire/efectos adversos , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Bulbo Olfatorio/patología , Suicidio , alfa-Sinucleína/genética , Adolescente , Adulto , Enfermedad de Alzheimer/genética , Preescolar , Ciudades , Humanos , Lactante , México , Adulto Joven
11.
Environ Res ; 164: 475-487, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29587223

RESUMEN

Exposures to fine particulate matter (PM2.5) and ozone (O3) above USEPA standards are associated with Alzheimer's disease (AD) risk. Metropolitan Mexico City (MMC) residents have life time exposures to PM2.5 and O3 above USEPA standards. We investigated AD intra and extracellular protein aggregates and ultrastructural neurovascular pathology in 203 MMC residents age 25.36 ±â€¯9.23 y. Immunohistochemical methods were used to identify AT8 hyperphosphorilated tau (Htau) and 4G8 (amyloid ß 17-24). Primary outcomes: staging of Htau and amyloid, per decade and cumulative PM2.5 (CPM2.5) above standard. Apolipoprotein E allele 4 (APOE4), age and cause of death were secondary outcomes. Subcortical pretangle stage b was identified in an 11month old baby. Cortical tau pre-tangles, neurofibrillary tangles (NFT) Stages I-II, amyloid phases 1-2, Htau in substantia nigrae, auditory, oculomotor, trigeminal and autonomic systems were identified by the 2nd decade. Progression to NFT stages III-V was present in 24.8% of 30-40 y old subjects. APOE4 carriers have 4.92 times higher suicide odds (p = 0.0006), and 23.6 times higher odds of NFT V (p < 0.0001) v APOE4 non-carriers having similar CPM2.5 exposure and age. Age (p = 0.0062) and CPM2.5 (p = 0.0178) were significant for developing NFT V. Combustion-derived nanoparticles were associated with early and progressive damage to the neurovascular unit. Alzheimer's disease starting in the brainstem of young children and affecting 99.5% of young urbanites is a serious health crisis. Air pollution control should be prioritised. Childhood relentless Htau makes a fundamental target for neuroprotective interventions and the first two decades are critical. We recommend the concept of preclinical AD be revised and emphasize the need to define paediatric environmental, nutritional, metabolic and genetic risk factor interactions of paramount importance to prevent AD. AD evolving from childhood is threating the wellbeing of our children and future generations.


Asunto(s)
Enfermedad de Alzheimer , Suicidio , Adulto , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/metabolismo , Niño , Preescolar , Ciudades , Humanos , Lactante , México , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Adulto Joven
12.
Environ Res ; 159: 186-201, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28803148

RESUMEN

Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Intestino Delgado/efectos de los fármacos , Nanopartículas/toxicidad , Nervio Vago/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Adolescente , Adulto , Animales , Biomarcadores/análisis , Niño , Ciudades , Perros , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/ultraestructura , Intestino Delgado/patología , Intestino Delgado/ultraestructura , Masculino , México , Microscopía Electrónica de Transmisión , Fosforilación , ARN Mensajero/análisis , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/patología , Uniones Estrechas/ultraestructura , Nervio Vago/metabolismo , Nervio Vago/ultraestructura , Adulto Joven , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Environ Res ; 146: 404-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26829765

RESUMEN

Millions of urban children are chronically exposed to high concentrations of air pollutants, i.e., fine particulate matter (PM2.5) and ozone, associated with increased risk for Alzheimer's disease. Compared with children living with clear air those in Mexico City (MC) exhibit systemic, brain and intrathecal inflammation, low CSF Aß42, breakdown of the BBB, attention and short-term memory deficits, prefrontal white matter hyperintensities, damage to epithelial and endothelial barriers, tight junction and neural autoantibodies, and Alzheimer and Parkinson's hallmarks. The prefrontal white matter is a target of air pollution. We examined by light and electron microscopy the prefrontal white matter of MC dogs (n: 15, age 3.17±0.74 years), children and teens (n: 34, age: 12.64±4.2 years) versus controls. Major findings in MC residents included leaking capillaries and small arterioles with extravascular lipids and erythrocytes, lipofuscin in pericytes, smooth muscle and endothelial cells (EC), thickening of cerebrovascular basement membranes with small deposits of amyloid, patchy absence of the perivascular glial sheet, enlarged Virchow-Robin spaces and nanosize particles (20-48nm) in EC, basement membranes, axons and dendrites. Tight junctions, a key component of the neurovascular unit (NVU) were abnormal in MC versus control dogs (χ(2)<0.0001), and white matter perivascular damage was significantly worse in MC dogs (p=0.002). The integrity of the NVU, an interactive network of vascular, glial and neuronal cells is compromised in MC young residents. Characterizing the early NVU damage and identifying biomarkers of neurovascular dysfunction may provide a fresh insight into Alzheimer pathogenesis and open opportunities for pediatric neuroprotection.


Asunto(s)
Contaminación del Aire/efectos adversos , Corteza Prefrontal/patología , Sustancia Blanca/patología , Adolescente , Enfermedad de Alzheimer/inducido químicamente , Animales , Niño , Preescolar , Perros , Femenino , Humanos , Lactante , Masculino , México , Microscopía Electrónica de Transmisión , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/ultraestructura , Población Urbana , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/ultraestructura
14.
Syst Biol ; 63(4): 457-79, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24562813

RESUMEN

Lobsters are a ubiquitous and economically important group of decapod crustaceans that include the infraorders Polychelida, Glypheidea, Astacidea and Achelata. They include familiar forms such as the spiny, slipper, clawed lobsters and crayfish and unfamiliar forms such as the deep-sea and "living fossil" species. The high degree of morphological diversity among these infraorders has led to a dynamic classification and conflicting hypotheses of evolutionary relationships. In this study, we estimated phylogenetic relationships among the major groups of all lobster families and 94% of the genera using six genes (mitochondrial and nuclear) and 195 morphological characters across 173 species of lobsters for the most comprehensive sampling to date. Lobsters were recovered as a non-monophyletic assemblage in the combined (molecular + morphology) analysis. All families were monophyletic, with the exception of Cambaridae, and 7 of 79 genera were recovered as poly- or paraphyletic. A rich fossil history coupled with dense taxon coverage allowed us to estimate and compare divergence times and origins of major lineages using two drastically different approaches. Age priors were constructed and/or included based on fossil age information or fossil discovery, age, and extant species count data. Results from the two approaches were largely congruent across deep to shallow taxonomic divergences across major lineages. The origin of the first lobster-like decapod (Polychelida) was estimated in the Devonian (∼409-372 Ma) with all infraorders present in the Carboniferous (∼353-318 Ma). Fossil calibration subsampling studies examined the influence of sampling density (number of fossils) and placement (deep, middle, and shallow) on divergence time estimates. Results from our study suggest including at least 1 fossil per 10 operational taxonomic units (OTUs) in divergence dating analyses. [Dating; decapods; divergence; lobsters; molecular; morphology; phylogenetics.].


Asunto(s)
Decápodos/anatomía & histología , Decápodos/clasificación , Fósiles , Filogenia , Animales , Proteínas de Artrópodos/genética , Evolución Biológica , Decápodos/genética , Tiempo
15.
Rev Invest Clin ; 67(5): 296-303, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26696333

RESUMEN

BACKGROUND: Prenatal protein malnutrition disrupts the pattern of maturation and development of the hippocampus and its neuroanatomy and increases inhibition of the granular cell layer of the fascia dentata. If local gamma-aminobutyric acid inter-neurons are partly responsible for inhibition of the hippocampus, it is reasonable to assume that there may be an increase in the gamma-aminobutyric acid cell population of prenatal protein malnutrition rats. OBJECTIVE: This experimental study was conducted to ascertain the effects of prenatal protein malnutrition on the density of GABAergic interneurons at the cornus ammonis and fascia dentata in rats. METHODS: Animals were investigated under two nutritional conditions: (i) prenatal protein malnutrition group fed 6% protein, and (ii) well-nourished control group fed 25% protein. Using an antibody for gamma-aminobutyric acid, immunoreactive cells (GABAergic) were assessed in the rostral-caudal direction of the dorsal hippocampus at four levels. RESULTS: (i) In 30-day-old rats with prenatal malnutrition, the fascia dentata had an average of 27% more GABAergic cells than the control group; this higher amount was not detectable at 90 days. (ii) There was a significant 18% increase in GABAergic neurons at level 1 of the cornus ammonis at 90 days of age. CONCLUSIONS: There was an increase in the population of interneurons in the fascia dentata and cornus ammonis in prenatal protein malnutrition rats. We conclude that prenatal hypoprotein malnutrition produces changes at 30 days in the fascia dentata. Results suggest that prenatal malnutrition also produces a delay in the programmed chronology of gamma-aminobutyric acid interneurons. Finally, in cornus ammonis, at 90 days of age, prenatal protein malnutrition showed an increase only at level 1; this effect may be evidenced in the long term, despite postnatal rehabilitation.


Asunto(s)
Hipocampo/patología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Desnutrición Proteico-Calórica/complicaciones , Ácido gamma-Aminobutírico/metabolismo , Factores de Edad , Animales , Giro Dentado/metabolismo , Femenino , Interneuronas/metabolismo , Masculino , Embarazo , Ratas , Ratas Wistar
16.
Reprod Biol ; 24(2): 100877, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461794

RESUMEN

Pre- and/or post-natal administrations of di(2-ethylhexyl) phthalate (DEHP) in experimental animals cause alterations in the spermatogenesis. However, the mechanism by which DEHP affects fertility is unknown and could be through alterations in the survival and differentiation of the gonocytes. The aim of the present study was to evaluate the effect of a single administration of DEHP in newborn mice on gonocytic proliferation, differentiation and survival and its long-term effects on seminiferous epithelium and sperm quality. BALB/c mice distributed into Control and DEHP groups were used. Each animal in the DEHP group was given a single dose of 500 mg/Kg at birth. The animals were analyzed at 1, 2, 4, 6, 8, 10 and 70 days postpartum (dpp). Testicular tissues were processed for morphological analysis to determine the different types of gonocytes, differentiation index, seminiferous epithelial alterations, and immunoreactivity to Stra8, Pcna and Vimentin proteins. Long-term evaluation of the seminiferous epithelium and sperm quality were carried out at 70 dpp. The DEHP animal group presented gonocytic degeneration with delayed differentiation, causing a reduction in the population of spermatogonia (Stra8 +) in the cellular proliferation (Pcna+) and disorganization of Vimentin filaments. These events had long-term repercussions on the quality of the seminiferous epithelium and semen. Our study demonstrates that at birth, there is a period that the testes are extremely sensitive to DEHP exposure, which leads to gonocytic degeneration and delay in their differentiation. This situation can have long-term repercussions or permanent effects on the quality of the seminiferous epithelium and sperm parameters.


Asunto(s)
Animales Recién Nacidos , Dietilhexil Ftalato , Ratones Endogámicos BALB C , Animales , Dietilhexil Ftalato/toxicidad , Masculino , Ratones , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Espermatogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Plastificantes/toxicidad , Femenino , Epitelio Seminífero/efectos de los fármacos
17.
PLoS Negl Trop Dis ; 18(7): e0012302, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950061

RESUMEN

BACKGROUND: Giardiasis and zinc deficiency have been identified as serious health problems worldwide. Although Zn depletion is known to occur in giardiasis, no work has investigated whether changes occur in brain structures. METHODS: Three groups of gerbils were used: control (1), orogastrically inoculated on day 3 after birth with trophozoites of two isolates of Giardia intestinalis (HGINV/WB) group (2 and 3). Estimates were made at five ages covering: establishment of infection, Giardia population growth, natural parasite clearance and a post-infection age. QuantiChrome zinc assay kit, cresyl violet staining and TUNEL technique were used. RESULTS: A significant decrease (p<0.01) in tissue zinc was observed and persisted after infection. Cytoarchitectural changes were observed in 75% of gerbils in the HGINV or WB groups. Ectopic pyramidal neurons were found in the cornus ammonis (CA1-CA3). At 60 and 90 days of age loss of lamination was clearly visible in CA1. In the dentate gyrus (DG), thinning of the dorsal lamina and abnormal thickening of the ventral lamina were observed from 30 days of age. In the cerebellum, we found an increase (p<0.01) in the thickness of the external granular layer (EGL) at 14 days of age that persisted until day 21 (C 3 ± 0.3 µm; HGINV 37 ± 5 µm; WB 28 ± 3 µm); Purkinje cell population estimation showed a significant decrease; a large number of apoptotic somas were observed scattered in the molecular layer; in 60 and 90 days old gerbils we found granular cell heterotopia and Purkinje cell ectopia. The pattern of apoptosis was different in the cerebellum and hippocampus of parasitized gerbils. CONCLUSION: The morphological changes found suggest that neuronal migration is affected by zinc depletion caused by giardiasis in early postnatal life; for the first time, the link between giardiasis-zinc depletion and damaged brain structures is shown. This damage may explain the psychomotor/cognitive delay associated with giardiasis. These findings are alarming. Alterations in zinc metabolism and signalling are known to be involved in many brain disorders, including autism.

18.
Int J Mol Sci ; 14(12): 23471-91, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24287918

RESUMEN

Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Proteínas de Choque Térmico/metabolismo , Nanopartículas/toxicidad , Priones/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Adolescente , Adulto , Animales , Niño , Perros , Chaperón BiP del Retículo Endoplásmico , Eritrocitos/efectos de los fármacos , Eritrocitos/patología , Femenino , Ventrículos Cardíacos/patología , Proteínas de Choque Térmico/genética , Humanos , Masculino , Nanopartículas/química , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/toxicidad , Proteínas Priónicas , Priones/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven
19.
Zookeys ; 1161: 169-202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234742

RESUMEN

Uncertainties regarding the taxonomic status and biogeographical distribution of some species of the genus Emerita from the western Atlantic led to thorough examination of the subtle morphological differences between two coexistent species (E.brasiliensis Schmitt, 1935 and E.portoricensis Schmitt, 1935) along the Brazilian coast and compare them using two genetic markers. The molecular phylogenetic analysis based on sequences of the 16S rRNA and COI genes showed that individuals identified as E.portoricensis were clustered into two clades: one containing representatives from the Brazilian coast and another containing specimens distributed in Central America. Our molecular-based phylogeny, combined with a detailed morphological analysis, revealed the Brazilian population as a new species, which is described here as Emeritaalmeidai Mantelatto & Balbino, sp. nov. The number of species in the genus Emerita is now raised to 12, with five of them occurring in the western Atlantic, five in the Indo-Pacific, and two in the eastern Pacific.

20.
Clin Ophthalmol ; 17: 2957-2965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822326

RESUMEN

Purpose: Recent advances in telemedicine have led to increased use of digital ophthalmoscopes (DO) in clinical settings. This review aims to assess commercially available DOs, including smartphone (SP), desktop, and handheld ophthalmoscopes, and evaluate their applications. Methods: A literature review was performed by searching PubMed (pubmed.ncbi.nlm.nih.gov), Web of Science (webofknowledge.com), and Science Direct (sciencedirect.com). All English-language papers that resulted from the search terms "digital ophthalmoscope", "screening tool", "glaucoma screening", "diabetic retinopathy screening", "cataract screening", and "papilledema screening" were reviewed. Studies that contained randomized clinical trials with human participants between January 2010 and December 2020 were included. The Risk of Bias in Systematic Reviews (ROBIS) tool was used to assess the methodological quality of each included paper. Results: Of the 1307 studies identified, 35 met inclusion and exclusion criteria. The ROBIS tool determined that 29/35 studies (82.8%) had a low risk of bias, 3/35 (8.5%) had a moderate risk of bias, and 3/35 (8.5%) had a high risk of bias. Conclusion: The continued adoption of DOs remains uncertain because of concerns about the image quality for non-mydriatic eyes and the confidence in data captured from the device. Likewise, there is a lack of guidelines for the use of DOs, which makes it difficult for providers to determine the best device for their practice and to ensure appropriate use. Even so, DOs continue to gain acceptance as technology and practice integration improve, especially in underserved areas with limited access to ophthalmologists.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA