RESUMEN
Bluetooth monitoring systems (BTMS) have opened a new era in traffic sensing, providing a reliable, economical, and easy-to-deploy solution to uniquely identify vehicles. Raw data from BTMS have traditionally been used to calculate travel time and origin-destination matrices. However, we could extend this to include other information like the number of vehicles or their residence times. This information, together with their temporal components, can be applied to the complex task of forecasting traffic. Level of service (LOS) prediction has opened a novel research line that fulfills the need to anticipate future traffic states, based on a standard link-based variable, accepted for both researchers and practitioners. In this paper, we incorporate BTMS's extended variables and temporal information to an LOS classifier based on a Random Undersampling Boost algorithm, which is proven to efficiently respond to the data unbalance intrinsic to this problem. By using this approach, we achieve an overall recall of 87.2% for up to 15-min prediction horizons, reaching 96.6% predicting congestion, and improving the results for the intermediate traffic states, especially complex given their intrinsic instability. Additionally, we provide detailed analyses on the impact of temporal information on the LOS predictor's performance, observing improvements up to a separation of 50 min between last features and prediction horizons. Furthermore, we study the predictor importance resulting from the classifiers to highlight those features contributing the most to the final achievements.
Asunto(s)
Algoritmos , PredicciónRESUMEN
COVID-19 has become a major global issue with large social-economic and health impacts, which led to important changes in people's behavior. One of these changes affected the way people use public transport. In this work we present a data-driven analysis of the impact of COVID-19 on public transport demand in the Community of Madrid, Spain, using data from ticket validations between February and September 2020. This period of time covers all stages of pandemic in Spain, including de-escalation phases. We find that ridership has dramatically decreased by 95% at the pandemic peak, recovering very slowly and reaching only half its pre-pandemic levels at the end of September. We analyze results for different transport modes, ticket types, and groups of users. Our work corroborates that low-income groups are the most reliant on public transportation, thus observing significantly lower decreases in their ridership during pandemic. This paper also shows different average daily patterns of public transit demand during each phase of the pandemic in Madrid. All these findings provide relevant information for transit agencies to design responses to an emergence situation like this pandemic, contributing to extend the global knowledge about COVID-19 impact on transport comparing results with other cities worldwide.
RESUMEN
COVID-19 has dramatically struck each section of our society: health, economy, employment, and mobility. This work presents a data-driven characterization of the impact of COVID-19 pandemic on public and private mobility in a mid-size city in Spain (Fuenlabrada). Our analysis used real data collected from the public transport smart card system and a Bluetooth traffic monitoring network, from February to September 2020, thus covering relevant phases of the pandemic. Our results show that, at the peak of the pandemic, public and private mobility dramatically decreased to 95% and 86% of their pre-COVID-19 values, after which the latter experienced a faster recovery. In addition, our analysis of daily patterns evidenced a clear change in the behavior of users towards mobility during the different phases of the pandemic. Based on these findings, we developed short-term predictors of future public transport demand to provide operators and mobility managers with accurate information to optimize their service and avoid crowded areas. Our prediction model achieved a high performance for pre- and post-state-of-alarm phases. Consequently, this work contributes to enlarging the knowledge about the impact of pandemic on mobility, providing a deep analysis about how it affected each transport mode in a mid-size city.
Asunto(s)
COVID-19 , Pandemias , Humanos , SARS-CoV-2 , España , TransportesRESUMEN
Transport agencies require accurate and updated information about public transport systems for the optimal decision-making processes regarding design and operation. In addition to assessing topology and service components, users' behaviors must be considered. To this end, a data-driven performance evaluation based on passengers' actual routes is key. Automatic fare collection platforms provide meaningful smart card data (SCD), but these are incomplete when gathered by entry-only systems. To obtain origin-destination (OD) matrices, we must manage complete journeys. In this paper, we use an adapted trip chaining method to reconstruct incomplete multi-modal journeys by finding spatial similarities between the outbound and inbound routes of the same user. From this dataset, we develop a performance evaluation framework that provides novel metrics and visualization utilities. First, we generate a space-time characterization of the overall operation of transport networks. Second, we supply enhanced OD matrices showing mobility patterns between zones and average traversed distances, travel times, and operation speeds, which model the real efficacy of the public transport system. We applied this framework to the Comunidad de Madrid (Spain), using 4 months' worth of real SCD, showing its potential to generate meaningful information about the performance of multi-modal public transport systems.
Asunto(s)
Transportes , Viaje , EspañaRESUMEN
Bicycle Sharing Systems (BSSs) are exponentially increasing in the urban mobility sector. They are traditionally conceived as a last-mile complement to the public transport system. In this paper, we demonstrate that BSSs can be seen as a public transport system in their own right. To do so, we build a mathematical framework for the classification of BSS trips. Using trajectory information, we create the trip index, which characterizes the intrinsic purpose of the use of BSS as transport or leisure. The construction of the trip index required a specific analysis of the BSS shortest path, which cannot be directly calculated from the topology of the network given that cyclists can find shortcuts through traffic lights, pedestrian crossings, etc. to reduce the overall traveled distance. Adding a layer of complication to the problem, these shortcuts have a non-trivial existence in terms of being intermittent, or short lived. We applied the proposed methodology to empirical data from BiciMAD, the public BSS in Madrid (Spain). The obtained results show that the trip index correctly determines transport and leisure categories, which exhibit distinct statistical and operational features. Finally, we inferred the underlying BSS public transport network and show the fundamental trajectories traveled by users. Based on this analysis, we conclude that 90.60% of BiciMAD's use fall in the category of transport, which demonstrates our first statement.
RESUMEN
Biological and artificial sensory systems share many features and functionalities in common. One shared challenge is the management setup and maintenance of sensory topological information. In the case of a massive artificial sensory receptor array, this is an extremely complex problem. Biological sensory receptor arrays, such as the visual or tactile system, face the same problem and have found excellent solutions by implementing processes of sensory organization. Not only can biological sensory organization initiate the topological data construction, it can deal with growing systems and repair damaged ones. Importantly, it can use the patterned activity of sensory receptors to extract topological relationships. Using inspiration from these biological processes, we propose an activity-dependent clustering method for organizing large arrays of artificial sensory receptors. We present an algorithm that proceeds hierarchically by building a quadtree description of sensory organization and possesses many qualities of its biological counterpart, namely it can operate autonomously, it uses the patterned activity of sensory receptors and it is capable of supporting growth and repair.
Asunto(s)
Algoritmos , Modelos Neurológicos , Redes Neurales de la Computación , Células Receptoras Sensoriales/fisiología , Análisis por Conglomerados , Vías Visuales/fisiologíaRESUMEN
E-scooter services have multiplied worldwide as a form of urban transport. Their use has grown so quickly that policymakers and researchers still need to understand their interrelation with other transport modes. At present, e-scooter services are primarily seen as a first-and-last-mile solution for public transport. However, we demonstrate that 50% of e-scooter trips are either substituting it or covering areas with little public transportation infrastructure. To this end, we have developed a novel data-driven methodology that autonomously classifies e-scooter trips according to their relation to public transit. Instead of predefined design criteria, the blind nature of our approach extracts the city's intrinsic parameters from real data. We applied this methodology to Rome (Italy), and our findings reveal that e-scooters provide specific mobility solutions in areas with particular needs. Thus, we believe that the proposed methodology will contribute to the understanding of e-scooter services as part of shared urban mobility.
RESUMEN
Quantitative processing of color-Doppler echocardiographic images has substantially improved noninvasive assessment of cardiac physiology. Many indices are computed from the velocity fields derived either from color-Doppler tissue imaging (DTI), such as acceleration, strain and strain-rate, or from blood-flow color-Doppler, such as intracardiac pressure gradients (ICPG). All of these indices are dependent on the finite resolution of the ultrasound scanner. Therefore, we developed an image-dependent method for assessing the influence of temporal, spatial, and velocity resolutions, on cardiovascular parameters derived from velocity images. In order to focus our study on the spatial, temporal, and velocity resolutions of the digital image, we did not consider the effect of other sources of noise such as the interaction between ultrasound and tissue. A simple first-order Taylor's expansion was used to establish the functional relationship between the acquired image velocity and the calculated cardiac index. Resolutions were studied on: (a) myocardial acceleration, strain, and strain-rate from DTI, and (b) ICPG from blood-flow color-Doppler. The performance of Taylor's-based error bounds (TBEB) was demonstrated on simulated models and illustrated on clinical images. Velocity and temporal resolution were highly relevant for the accuracy of DTI-derived parameters and ICPGs. TBEB allow to assess the effects of ideal digital image resolution on quantitative cardiovascular indices derived from velocity measurements obtained by cardiac imaging techniques.
Asunto(s)
Circulación Coronaria/fisiología , Ecocardiografía Doppler en Color , Procesamiento de Imagen Asistido por Computador , Contracción Miocárdica/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Simulación por Computador , Humanos , Modelos Cardiovasculares , Modelos Estructurales , Factores de TiempoRESUMEN
Heart rate turbulence (HRT) is a transient acceleration and subsequent deceleration of the heart rate after a premature ventricular complex (PVC), and it has been shown to be a strong risk stratification criterion in patients with cardiac disease. In order to reduce the noise level of the HRT signal, conventional measurements of HRT use a patient-averaged template of post-PVC tachogram (PPT), hence providing with long-term HRT indexes. We hypothesize that the reduction of the noise level at each isolated PPT, using signal processing techniques, will allow us to estimate short-term HRT indexes. Accordingly, its application could be extended to patients with reduced number of available PPT. In this paper, several HRT denoising procedures are proposed and tested, with special attention to support vector machine (SVM) estimation, as this is a robust algorithm that allows us to deal with few available time samples in the PPT. Pacing-stimulated HRT during electrophysiological study are used as a low-noise gold standard. Measurements in a 24-h Holter patient database reveal a significant reduction in the bias and the variance of HRT measurements. We conclude that SVM denoising yields short-term HRT measurements and improves the signal-to-noise level of long-term HRT measurements.