Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35458893

RESUMEN

The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.


Asunto(s)
Polvo , Medio Ambiente Extraterrestre , Atmósfera
2.
Environ Microbiol ; 14(9): 2495-510, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22564293

RESUMEN

In this study we examined the microbial community composition and operating metabolisms on the surface and in the permafrost of Deception Island, (Antarctica) with an on site antibody microarray biosensor. Samples (down to a depth of 4.2 m) were analysed with LDChip300 (Life Detector Chip), an immunosensor containing more than 300 antibodies targeted to bacterial and archaeal antigens. The immunograms showed positive antigen-antibody reactions in all surface samples (lichens, pyroclasts) and the top layer of the permafrost. The results indicated the presence of exopolysaccharides, bacteria belonging to the Alpha-, Delta- and Gammaproteobacteria, Bacteroidetes, Gram-positive Actinobacteria and Firmicutes, as well as archaeal species, most probably Methanobacterium spp. Positive reactions with antibodies to proteins and peptides revealed the presence of nitrogen fixation (NifHD, GlnB, HscA), methanogenic (McrB), iron homeostasis and iron scavenging (ferritins and DPS proteins) proteins, as well as ABC transporters, which indicated that these processes were operating at the time of sampling. These results were validated with other molecular ecology techniques such as oligonucleotide microarrays, 16S bacterial rRNA gene sequence analysis, aerobic viable counts and microscopy. Molecular ecology results showed a differentiated pattern along the depth of the drill, being the top active layer the most diverse, with Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes and the phototrophs Cyanobacteria and Chloroflexi as dominant groups. Actinobacteria and Firmicutes were dominant in depths from 0.5 to 2 m, and Betaproteobacteria from 3 to 4.2 m. The geochemical analysis revealed the presence of low molecular weight organic acids (acetate, formate) which could be used by microorganisms as energy sources for sulfate, nitrate and metal reduction under anaerobic conditions.


Asunto(s)
Archaea , Bacterias , Biodiversidad , Islas , Microbiología del Suelo , Regiones Antárticas , Antígenos Arqueales/metabolismo , Antígenos Bacterianos/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Carga Bacteriana , Biomarcadores/análisis , Microscopía Electrónica de Rastreo , Filogenia , ARN Ribosómico 16S/genética , Suelo/química
3.
Astrobiology ; 11(1): 15-28, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21294639

RESUMEN

The search for unequivocal signs of life on other planetary bodies is one of the major challenges for astrobiology. The failure to detect organic molecules on the surface of Mars by measuring volatile compounds after sample heating, together with the new knowledge of martian soil chemistry, has prompted the astrobiological community to develop new methods and technologies. Based on protein microarray technology, we have designed and built a series of instruments called SOLID (for "Signs Of LIfe Detector") for automatic in situ detection and identification of substances or analytes from liquid and solid samples (soil, sediments, or powder). Here, we present the SOLID3 instrument, which is able to perform both sandwich and competitive immunoassays and consists of two separate functional units: a Sample Preparation Unit (SPU) for 10 different extractions by ultrasonication and a Sample Analysis Unit (SAU) for fluorescent immunoassays. The SAU consists of five different flow cells, with an antibody microarray in each one (2000 spots). It is also equipped with an exclusive optical package and a charge-coupled device (CCD) for fluorescent detection. We demonstrated the performance of SOLID3 in the detection of a broad range of molecular-sized compounds, which range from peptides and proteins to whole cells and spores, with sensitivities at 1-2 ppb (ng mL⁻¹) for biomolecules and 104 to 10³ spores per milliliter. We report its application in the detection of acidophilic microorganisms in the Río Tinto Mars analogue and report the absence of substantial negative effects on the immunoassay in the presence of 50 mM perchlorate (20 times higher than that found at the Phoenix landing site). Our SOLID instrument concept is an excellent option with which to detect biomolecules because it avoids the high-temperature treatments that may destroy organic matter in the presence of martian oxidants.


Asunto(s)
Anticuerpos/inmunología , Exobiología/instrumentación , Medio Ambiente Extraterrestre/química , Dispositivos Ópticos , Planetas , Análisis por Matrices de Proteínas/instrumentación , Vuelo Espacial/instrumentación , Inmunoensayo , Marte , Percloratos/análisis , Ultrasonido
4.
Astrobiology ; 11(1): 29-44, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21294642

RESUMEN

The particular mineralogy formed in the acidic conditions of the Río Tinto has proven to be a first-order analogue for the acid-sulfate aqueous environments of Mars. Therefore, studies about the formation and preservation of biosignatures in the Río Tinto will provide insights into equivalent processes on Mars. We characterized the biomolecular patterns recorded in samples of modern and old fluvial sediments along a segment of the river by means of an antibody microarray containing more than 200 antibodies (LDCHIP200, for Life Detector Chip) against whole microorganisms, universal biomolecules, or environmental extracts. Samples containing 0.3-0.5 g of solid material were automatically analyzed in situ by the Signs Of LIfe Detector instrument (SOLID2), and the results were corroborated by extensive analysis in the laboratory. Positive antigen-antibody reactions indicated the presence of microbial strains or high-molecular-weight biopolymers that originated from them. The LDCHIP200 results were quantified and subjected to a multivariate analysis for immunoprofiling. We associated similar immunopatterns, and biomolecular markers, to samples with similar sedimentary age. Phyllosilicate-rich samples from modern fluvial sediments gave strong positive reactions with antibodies against bacteria of the genus Acidithiobacillus and against biochemical extracts from Río Tinto sediments and biofilms. These samples contained high amounts of sugars (mostly polysaccharides) with monosaccharides like glucose, rhamnose, fucose, and so on. By contrast, the older deposits, which are a mix of clastic sands and evaporites, showed only a few positives with LDCHIP200, consistent with lower protein and sugar content. We conclude that LDCHIP200 results can establish a correlation between microenvironments, diagenetic stages, and age with the biomarker profile associated with a sample. Our results would help in the search for putative martian biomarkers in acidic deposits with similar diagenetic maturity. Our LDCHIP200 and SOLID-like instruments may be excellent tools for the search for molecular biomarkers on Mars or other planets.


Asunto(s)
Ecosistema , Exobiología/métodos , Medio Ambiente Extraterrestre/química , Sedimentos Geológicos/clasificación , Marte , Análisis por Matrices de Proteínas/métodos , Biomarcadores/análisis , Biomasa , Carbohidratos/análisis , Análisis por Conglomerados , Cromatografía de Gases y Espectrometría de Masas , Minerales/análisis , Análisis Multivariante , Proteínas/análisis , Reproducibilidad de los Resultados
5.
Astrobiology ; 11(10): 969-96, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22149750

RESUMEN

The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg(-1)) and perchlorate (41.13 µg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 µg g(-1)) or formate (76.06 µg g(-1)) as electron donors, and sulfate (15875 µg g(-1)), nitrate (13490 µg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Técnicas Biosensibles , Clima Desértico , Consorcios Microbianos , Biomarcadores/análisis , Chile , Ecosistema , Marte , Salinidad
6.
Astrobiology ; 8(5): 987-99, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19105755

RESUMEN

A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.


Asunto(s)
Anticuerpos/inmunología , Exobiología/métodos , Inmunoensayo/métodos , Marte , Análisis por Matrices de Proteínas , Simulación del Espacio/instrumentación , Simulación del Espacio/métodos , Antígenos , Bacillus subtilis/inmunología , ADN , Exobiología/instrumentación , Fluorescencia , Laboratorios , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA