Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trends Biochem Sci ; 47(9): 732-735, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35418348

RESUMEN

Alternative histone acylations integrate gene expression with cellular metabolic states. Recent measurements of cellular acyl-coenzyme A (acyl-CoA) pools highlight the potential that histone post-translational modifications (PTMs) contribute directly to the regulation of metabolite pools. A metabolite-centric view throws new light onto roles and evolution of histone PTMs.


Asunto(s)
Cromatina , Histonas , Acilcoenzima A/metabolismo , Acilación , Histonas/metabolismo , Procesamiento Proteico-Postraduccional
2.
Mol Cell Proteomics ; 23(7): 100799, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866077

RESUMEN

Histone posttranslational modifications (PTMs) have crucial roles in a multitude of cellular processes, and their aberrant levels have been linked with numerous diseases, including cancer. Although histone PTM investigations have focused so far on methylations and acetylations, alternative long-chain acylations emerged as new dimension, as they are linked to cellular metabolic states and affect gene expression through mechanisms distinct from those regulated by acetylation. Mass spectrometry is the most powerful, comprehensive, and unbiased method to study histone PTMs. However, typical mass spectrometry-based protocols for histone PTM analysis do not allow the identification of naturally occurring propionylation and butyrylation. Here, we present improved state-of-the-art sample preparation and analysis protocols to quantitate these classes of modifications. After testing different derivatization methods coupled to protease digestion, we profiled common histone PTMs and histone acylations in seven mouse tissues and human normal and tumor breast clinical samples, obtaining a map of propionylations and butyrylations found in different tissue contexts. A quantitative histone PTM analysis also revealed a contribution of histone acylations in discriminating different tissues, also upon perturbation with antibiotics, and breast cancer samples from the normal counterpart. Our results show that profiling only classical modifications is limiting and highlight the importance of using sample preparation methods that allow the analysis of the widest possible spectrum of histone modifications, paving the way for deeper insights into their functional significance in cellular processes and disease states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA