Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(35): e2302800120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37607225

RESUMEN

The adiabatic elastocaloric effect measures the temperature change of a given system with strain and provides a thermodynamic probe of the entropic landscape in the temperature-strain space. Here, we demonstrate that the DC bias strain-dependence of AC elastocaloric effect allows decomposition of the latter into symmetric (rotation-symmetry-preserving) and antisymmetric (rotation-symmetry-breaking) strain channels, using a tetragonal [Formula: see text]-electron intermetallic DyB[Formula: see text]C[Formula: see text]-whose antiferroquadrupolar order breaks local fourfold rotational symmetries while globally remaining tetragonal-as a showcase example. We capture the strain evolution of its quadrupolar and magnetic phase transitions using both singularities in the elastocaloric coefficient and its jumps at the transitions, and the latter we show follows a modified Ehrenfest relation. We find that antisymmetric strain couples to the underlying order parameter in a biquadratic (linear-quadratic) manner in the antiferroquadrupolar (canted antiferromagnetic) phase, which are attributed to a preserved (broken) global tetragonal symmetry, respectively. The broken tetragonal symmetry in the magnetic phase is further evidenced by elastocaloric strain-hysteresis and optical birefringence. Additionally, within the staggered quadrupolar order, the observed elastocaloric response reflects a quadratic increase of entropy with antisymmetric strain, analogous to the role magnetic field plays for Ising antiferromagnetic orders by promoting pseudospin flips. Our results demonstrate AC elastocaloric effect as a compact and incisive thermodynamic probe into the coupling between electronic degrees of freedom and strain in free energy, which holds the potential for investigating and understanding the symmetry of a wide variety of ordered phases in broader classes of quantum materials.

2.
Proc Natl Acad Sci U S A ; 119(28): e2122599119, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787047

RESUMEN

We characterize the universal far-from-equilibrium dynamics of the two-dimensional quantum Heisenberg magnet isolated from its environment. For a broad range of initial conditions, we find a long-lived universal prethermal regime characterized by self-similar behavior of spin-spin correlations. We analytically derive the spatial-temporal scaling exponents and find excellent agreement with numerics using phase space methods. The scaling exponents are insensitive to the choice of initial conditions, which include coherent and incoherent spin states with values of total magnetization and energy in a wide range. Compared to previously studied self-similar dynamics in nonequilibrium O(n) field theories and Bose gases, we find qualitatively distinct scaling behavior originating from the presence of spin modes that remain gapless at long times and are protected by the global SU(2) symmetry. Our predictions, which suggest a distinct nonequilibrium universality class from Bose gases and O(n) theories, are readily testable in ultracold atoms simulators of Heisenberg magnets.

3.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34131074

RESUMEN

Scattering experiments have revolutionized our understanding of nature. Examples include the discovery of the nucleus [R. G. Newton, Scattering Theory of Waves and Particles (1982)], crystallography [U. Pietsch, V. Holý, T. Baumback, High-Resolution X-Ray Scattering (2004)], and the discovery of the double-helix structure of DNA [J. D. Watson, F. H. C. Crick, Nature 171, 737-738]. Scattering techniques differ by the type of particles used, the interaction these particles have with target materials, and the range of wavelengths used. Here, we demonstrate a two-dimensional table-top scattering platform for exploring magnetic properties of materials on mesoscopic length scales. Long-lived, coherent magnonic excitations are generated in a thin film of yttrium iron garnet and scattered off a magnetic target deposited on its surface. The scattered waves are then recorded using a scanning nitrogen vacancy center magnetometer that allows subwavelength imaging and operation under conditions ranging from cryogenic to ambient environment. While most scattering platforms measure only the intensity of the scattered waves, our imaging method allows for spatial determination of both amplitude and phase of the scattered waves, thereby allowing for a systematic reconstruction of the target scattering potential. Our experimental results are consistent with theoretical predictions for such a geometry and reveal several unusual features of the magnetic response of the target, including suppression near the target edges and a gradient in the direction perpendicular to the direction of surface wave propagation. Our results establish magnon scattering experiments as a platform for studying correlated many-body systems.

4.
Phys Rev Lett ; 125(23): 230601, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33337214

RESUMEN

We study the far from equilibrium prethermal dynamics of magnons in Heisenberg ferromagnets. We show that such systems exhibit universal self-similar scaling in momentum and time of the quasiparticle distribution function, with the scaling exponents independent of microscopic details or initial conditions. We argue that the SU(2) symmetry of the Hamiltonian, which leads to a strong momentum-dependent magnon-magnon scattering amplitude, gives rise to qualitatively distinct prethermal dynamics from that recently observed in Bose gases. We compute the scaling exponents using the Boltzmann kinetic equation and incoherent initial conditions that can be realized with microwave pumping of magnons. We also compare our numerical results with analytic estimates of the scaling exponents and demonstrate the robustness of the scaling to variations in the initial conditions. Our predictions can be tested in quench experiments of spin systems in optical lattices and pump-probe experiments in ferromagnetic insulators such as yttrium iron garnet.

5.
Nano Lett ; 16(10): 6036-6041, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27598943

RESUMEN

Vertical heterostructures of van der Waals materials enable new pathways to tune charge and energy transport characteristics in nanoscale systems. We propose that graphene Schottky junctions can host a special kind of photoresponse that is characterized by strongly coupled heat and charge flows that run vertically out of the graphene plane. This regime can be accessed when vertical energy transport mediated by thermionic emission of hot carriers overwhelms electron-lattice cooling as well as lateral diffusive energy transport. As such, the power pumped into the system is efficiently extracted across the entire graphene active area via thermionic emission of hot carriers into a semiconductor material. Experimental signatures of this regime include a large and tunable internal responsivity [Formula: see text] with a nonmonotonic temperature dependence. In particular, [Formula: see text] peaks at electronic temperatures on the order of the Schottky barrier potential ϕ and has a large upper limit [Formula: see text] (e/ϕ = 10 A/W when ϕ = 100 meV). Our proposal opens up new approaches for engineering the photoresponse in optically active graphene heterostructures.

6.
Nano Lett ; 15(3): 1451-6, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25630037

RESUMEN

Transport in photoactive graphene heterostructures, originating from the dynamics of photogenerated hot carriers, is governed by the processes of thermionic emission, electron-lattice thermal imbalance, and cooling. These processes give rise to interesting photoresponse effects, in particular negative differential resistance (NDR) arising in the hot-carrier regime. The NDR effect stems from a strong dependence of electron-lattice cooling on the carrier density, which results in the carrier temperature dropping precipitously upon increasing bias. The ON-OFF switching between the NDR regime and the conventional cold emission regime, as well as the gate-controlled closed-circuit current that is present at zero bias voltage, can serve as signatures of hot-carrier dominated transport.

7.
Nano Lett ; 14(6): 3033-40, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24780008

RESUMEN

Realizing Raman enhancement on a flat surface has become increasingly attractive after the discovery of graphene-enhanced Raman scattering (GERS). Two-dimensional (2D) layered materials, exhibiting a flat surface without dangling bonds, were thought to be strong candidates for both fundamental studies of this Raman enhancement effect and its extension to meet practical applications requirements. Here, we study the Raman enhancement effect on graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2), by using the copper phthalocyanine (CuPc) molecule as a probe. This molecule can sit on these layered materials in a face-on configuration. However, it is found that the Raman enhancement effect, which is observable on graphene, hBN, and MoS2, has different enhancement factors for the different vibrational modes of CuPc, depending strongly on the surfaces. Higher-frequency phonon modes of CuPc (such as those at 1342, 1452, 1531 cm(-1)) are enhanced more strongly on graphene than that on h-BN, while the lower frequency phonon modes of CuPc (such as those at 682, 749, 1142, 1185 cm(-1)) are enhanced more strongly on h-BN than that on graphene. MoS2 demonstrated the weakest Raman enhancement effect as a substrate among these three 2D materials. These differences are attributed to the different enhancement mechanisms related to the different electronic properties and chemical bonds exhibited by the three substrates: (1) graphene is zero-gap semiconductor and has a nonpolar C-C bond, which induces charge transfer (2) h-BN is insulating and has a strong B-N bond, while (3) MoS2 is semiconducting with the sulfur atoms on the surface and has a polar covalent bond (Mo-S) with the polarity in the vertical direction to the surface. Therefore, the different Raman enhancement mechanisms differ for each material: (1) charge transfer may occur for graphene; (2) strong dipole-dipole coupling may occur for h-BN, and (3) both charge transfer and dipole-dipole coupling may occur, although weaker in magnitude, for MoS2. Consequently, this work studied the origin of the Raman enhancement (specifically, chemical enhancement) and identifies h-BN and MoS2 as two different types of 2D materials with potential for use as Raman enhancement substrates.

8.
Nano Lett ; 12(1): 161-6, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22111957

RESUMEN

Hexagonal boron nitride (h-BN) is very attractive for many applications, particularly, as protective coating, dielectric layer/substrate, transparent membrane, or deep ultraviolet emitter. In this work, we carried out a detailed investigation of h-BN synthesis on Cu substrate using chemical vapor deposition (CVD) with two heating zones under low pressure (LP). Previous atmospheric pressure (AP) CVD syntheses were only able to obtain few layer h-BN without a good control on the number of layers. In contrast, under LPCVD growth, monolayer h-BN was synthesized and time-dependent growth was investigated. It was also observed that the morphology of the Cu surface affects the location and density of the h-BN nucleation. Ammonia borane is used as a BN precursor, which is easily accessible and more stable under ambient conditions than borazine. The h-BN films are characterized by atomic force microscopy, transmission electron microscopy, and electron energy loss spectroscopy analyses. Our results suggest that the growth here occurs via surface-mediated growth, which is similar to graphene growth on Cu under low pressure. These atomically thin layers are particularly attractive for use as atomic membranes or dielectric layers/substrates for graphene devices.


Asunto(s)
Compuestos de Boro/química , Cobre/química , Cristalización/métodos , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Gases/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
9.
Science ; 364(6436): 154-157, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30975884

RESUMEN

Understanding and controlling nonequilibrium electronic phenomena is an outstanding challenge in science and engineering. By electrically driving ultraclean graphene devices out of equilibrium, we observe an instability that is manifested as substantially enhanced current fluctuations and suppressed conductivity at microwave frequencies. Spatial mapping of the nonequilibrium current fluctuations using nanoscale magnetic field sensors reveals that the fluctuations grow exponentially along the direction of carrier flow. Our observations, including the dependence on density and temperature, are consistently explained by the emergence of an electron-phonon Cerenkov instability at supersonic drift velocities. These results offer the opportunity for tunable terahertz generation and active phononic devices based on two-dimensional materials.

10.
Science ; 361(6404): 789-794, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30139870

RESUMEN

Quantum-relativistic matter is ubiquitous in nature; however, it is notoriously difficult to probe. The ease with which external electric and magnetic fields can be introduced in graphene opens a door to creating a tabletop prototype of strongly confined relativistic matter. Here, through a detailed spectroscopic mapping, we directly visualize the interplay between spatial and magnetic confinement in a circular graphene resonator as atomic-like shell states condense into Landau levels. We directly observe the development of a "wedding cake"-like structure of concentric regions of compressible-incompressible quantum Hall states, a signature of electron interactions in the system. Solid-state experiments can, therefore, yield insights into the behavior of quantum-relativistic matter under extreme conditions.

11.
Science ; 356(6340): 845-849, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28546211

RESUMEN

The phase of a quantum state may not return to its original value after the system's parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry phase-induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a relatively small critical magnetic field is reached. This behavior results from turning on a π Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 millitesla, potentially enabling a variety of optoelectronic graphene device applications.

12.
Science ; 348(6235): 672-5, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25954005

RESUMEN

The design of high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Complementing previous approaches to confine electronic waves by carefully positioned adatoms at clean metallic surfaces, we demonstrate an approach inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's gate-tunable light-like carriers, we create whispering-gallery mode (WGM) resonators defined by circular pn junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range. The WGM-type confinement and associated resonances are a new addition to the quantum electron-optics toolbox, paving the way to develop electronic lenses and resonators.

13.
ACS Nano ; 8(2): 1330-41, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24456167

RESUMEN

Resonant Raman spectroscopy studies are performed to access information about the intertube interactions and wall-to-wall distances in double- and triple-walled carbon nanotubes. Here, we explain how the surroundings of the nanotubes in a multiwalled system influence their radial breathing modes. Of particular interest, the innermost tubes in double- and triple-walled carbon nanotube systems are shown to be significantly shielded from environmental interactions, except for those coming from the intertube interaction with their own respective host tubes. From a comparison of the Raman results for bundled as well as individual fullerene-peapod-derived double- and triple-walled carbon nanotubes, we observe that metallic innermost tubes, when compared to their semiconducting counterparts, clearly show weaker intertube interactions. Additionally, we discuss a correlation between the wall-to-wall distances and the frequency upshifts of the radial breathing modes observed for the innermost tubes in individual double- and triple-walled carbon nanotubes. All results allow us to contemplate fundamental properties related to DWNTs and TWNTs, as for example diameter- and chirality-dependent intertube interactions. We also discuss differences in fullerene-peapod-derived and chemical vapor deposition grown double- and triple-walled systems with the focus on mechanical coupling and interference effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA