Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancer Gene Ther ; 7(2): 292-9, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10770639

RESUMEN

The serine protease urokinase-type plasminogen activator, uPA, when bound to its specific receptor, uPAR (CD87), plays a significant role in tumor cell invasion and metastasis. In breast cancer, enhanced uPA antigen in the primary tumor is correlated with poor prognosis of the patient. In an in vivo nude mouse model, we tested tumor growth and metastasis of human breast carcinoma cells that had been transfected with an expression plasmid encoding a soluble form of uPAR (suPAR). We explored, whether suPAR/uPA interaction reduces the binding of uPA to cell surface-associated uPAR, and, as a consequence, could suppress tumor growth and metastasis of the human breast cancer cell line MDA-MB-231 BAG. Overexpressed, secreted suPAR was shown to bind and thus scavenge the uPA secreted by the transfected lines suPAR3 and suPAR10. In vitro, an overexpression of suPAR did not alter the proliferation rate of the transfected tumor cells, nor did it affect the expression of uPA. Overexpression of suPAR led to a reduction in the plasminogen activation-related proteolytic activity of breast carcinoma cells. Primary tumor growth in the mammary fat pad of nude mice was followed up for 52 days. Overexpression of suPAR correlated with a reduction in tumor growth (from day 21, reaching 30% by day 34) as well as lung colonization (lung metastasis-positive mice in suPAR3: 4 of 17; suPAR10: 3 of 10; parental MDA-MB-231 BAG: 13 of 18). We conclude that suPAR overexpression leading to effective scavenge of uPA impairs proteolysis as well as the tumor growth and metastatic potential of breast carcinoma cells in vivo.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Precursores Enzimáticos/biosíntesis , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/terapia , Receptores de Superficie Celular/biosíntesis , Activador de Plasminógeno de Tipo Uroquinasa/biosíntesis , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Células CHO , División Celular/genética , Cricetinae , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Desnudos , Unión Proteica , Receptores de Superficie Celular/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Solubilidad , Transfección , Células Tumorales Cultivadas , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
2.
EMBO J ; 14(14): 3445-51, 1995 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-7628445

RESUMEN

In an attempt to understand the mechanisms of sorting of mitochondrial inner membrane proteins, we have analyzed the import of subunit 9 of the mitochondrial F1F0-ATPase (Su9) from Neurospora crassa, an integral inner membrane protein. A chimeric protein was used consisting of the presequence and the first transmembrane domain of Su9 fused to mouse dihydrofolate reductase (preSu9(1-112)-DHFR). This protein attains the correct topology across the inner membrane (Nout-Cin) following import. The transmembrane domain becomes first completely imported into the matrix, where after processing of the presequence, it mediates membrane insertion and export of the N-terminal tail. Import and export steps can be experimentally dissected into two distinct events. Translocation of the N-terminal hydrophilic tail out of the matrix was blocked when the presequence was not processed, indicating an important role of the sequences and charges flanking the hydrophobic domain. Furthermore, export was supported by a delta pH and required matrix ATP hydrolysis. Thus the hydrophobic transmembrane domain operates as a membrane insertion signal and not as a stop-transfer signal. Our findings suggest that several aspects of this sorting process have been conserved from their prokaryotic ancestors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Neurospora crassa/enzimología , ATPasas de Translocación de Protón/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico Activo , Proteínas HSP70 de Choque Térmico/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Precursores de Proteínas/metabolismo , Señales de Clasificación de Proteína/metabolismo , ATPasas de Translocación de Protón/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
3.
J Biol Chem ; 274(28): 19617-22, 1999 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-10391898

RESUMEN

Export of N-terminal tails of mitochondrial inner membrane proteins from the mitochondrial matrix is a membrane potential-dependent process, mediated by the Oxa1p translocation machinery. The hydrophilic segments of these membrane proteins, which undergo export, display a characteristic charge profile where intermembrane space-localized segments bear a net negative charge, whereas those remaining in the matrix have a net positive one. Using a model protein, preSu9(1-112)-dihydrofolate reductase (DHFR), which undergoes Oxa1p-mediated N-tail export, we demonstrate here that the net charge of N- and C-flanking regions of the transmembrane domain play a critical role in determining the orientation of the insertion process. The N-tail must bear a net negative charge to be exported to the intermembrane space. Furthermore, a net positive charge of the C-terminal region supports this N-tail export event. These data provide experimental evidence that protein export in mitochondria adheres to the "positive-inside" rule, described for sec-independent sorting of membrane proteins in prokaryotes. We propose here that the importance of a charge profile reflects a need for specific protein-protein interactions to occur in the export reaction, presumably at the level of the Oxa1p export machinery.


Asunto(s)
Mitocondrias/metabolismo , Fragmentos de Péptidos/metabolismo , Transporte Biológico , Núcleo Celular/metabolismo , Complejo IV de Transporte de Electrones , Proteínas de la Membrana/química , Proteínas Mitocondriales , Mutagénesis , Neurospora crassa/enzimología , Proteínas Nucleares/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Proteínas Recombinantes de Fusión/química , Saccharomyces cerevisiae , Electricidad Estática , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética
4.
J Biol Chem ; 273(14): 8040-7, 1998 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-9525904

RESUMEN

D-Lactate dehydrogenase (D-LD) is located in the inner membrane of mitochondria. It spans the membrane once in an Nin-Cout orientation with the bulk of the protein residing as a folded domain in the intermembrane space. D-LD is synthesized as a precursor with an N-terminal cleavable presequence and is imported into the mitochondria in a Deltapsi-dependent, but mt-Hsp70-independent manner. Upon import in vitro D-LD folds in the intermembrane space to attain a conformation indistinguishable from endogenous D-LD. Sorting of D-LD to the inner membrane is directed by a composite topogenic signal consisting of the hydrophobic transmembrane segment and a cluster of charged amino acids C-terminal to it. We propose a model for the mode of operation of the sorting signal of D-LD. This model also accounts for the driving force of translocation across the outer membrane, in the apparent absence of mt-Hsp70-dependent assisted import and involves the folding of the D-LD in the intermembrane space.


Asunto(s)
L-Lactato Deshidrogenasa/metabolismo , Lactato Deshidrogenasas , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Membrana Celular/metabolismo , Metabolismo Energético , L-Lactato Deshidrogenasa/química , Pliegue de Proteína , Saccharomyces cerevisiae/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA