Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 34(6): 1084-1095, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37221455

RESUMEN

Polyamidoamine (PAMAM) dendrimers are among the most studied cationic polymers as non-viral gene delivery vectors. However, an "ideal" PAMAM-based gene delivery vector is still missing due to the high manufacturing costs and non-negligible cytotoxicity associated with the use of high-generation dendrimers, whereas low-generation dendrimers are far from displaying efficient gene transfection. In order to cover this gap in the literature, in this study, we propose the functionalization of the outer primary amines of PAMAM G2 and PAMAM G4 with building blocks bearing fluorinated moieties along with a guanidino functional group. We have designed and synthetized two fluorinated arginine (Arg)-based Michael acceptors which were straightforwardly "clicked" to PAMAM dendrimers without the need for coupling reagents and/or catalysts. The obtained conjugates, in particular, derivative 1 formed starting from the low-cost PAMAM G2 and a building block bearing two trifluoromethyl groups, were able to efficiently complex plasmid DNA, had negligible cytotoxicity, and showed improved gene transfection efficiency as compared to undecorated PAMAM dendrimers and a corresponding unfluorinated PAMAM-Arg derivative, with derivative 1 being two orders of magnitude more efficient than the gold standard branched polyethylenimine, bPEI, 25 kDa. These results highlight the importance of the presence of trifluoromethyl moieties for both gene transfection and a possible future application in 19F magnetic resonance imaging.


Asunto(s)
Dendrímeros , Transfección , Técnicas de Transferencia de Gen , Terapia Genética
2.
Colloids Surf B Biointerfaces ; 190: 110926, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32155458

RESUMEN

Synthetic polymers are attracting growing attention as additives for laundry and personal care products. In particular, the high volatility of many common fragrances requires the development of polymeric particles for their encapsulation and controlled release. Unfortunately, the vast majority of these carriers is made from polymers that are not biodegradable. This poses severe concerns about the accumulation of nano- and microplastics. Hence, such particles are expected to be banned from the market in the coming years. Therefore, biodegradable particles enabling a long-lasting release of the fragrances are urgently needed. In this work, we produced biodegradable nanoparticles (NPs) that are structurally composed of lactones, i.e. well known perfumes that occur naturally and that are already considered safe by regulatory agencies. We polymerized these lactones via ring opening polymerization (ROP) using an ionizable tertiary amine as initiator to produce in a single step amphiphilic oligoesters able to directly self-assemble into NPs once nanoprecipitated in water. In this way, we can produce biodegradable NPs with a perfume loading up to 85 % w/w without the need for additional surfactants. Subsequently we show that the ionizable group is able to confer a positive charge to our nanoparticles and, in turn, a high adsorption capacity on natural fibers (i.e. hairs and cotton fabric). Finally, we demonstrate the nanoparticle resistance to rinsing and their ability to confer a long-lasting fragrance perception to treated hair swatches for at least 3 weeks.


Asunto(s)
Fibra de Algodón , Cabello/química , Lactonas/química , Nanopartículas/química , Adsorción , Aminas/química , Humanos , Lactonas/síntesis química , Estructura Molecular , Tamaño de la Partícula , Polimerizacion , Propiedades de Superficie , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA