Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Brain ; 146(3): 1040-1052, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36717986

RESUMEN

Humans accumulate with age the dark-brown pigment neuromelanin inside specific neuronal groups. Neurons with the highest neuromelanin levels are particularly susceptible to degeneration in Parkinson's disease, especially dopaminergic neurons of the substantia nigra, the loss of which leads to characteristic motor Parkinson's disease symptoms. In contrast to humans, neuromelanin does not appear spontaneously in most animals, including rodents, and Parkinson's disease is an exclusively human condition. Using humanized neuromelanin-producing rodents, we recently found that neuromelanin can trigger Parkinson's disease pathology when accumulated above a specific pathogenic threshold. Here, by taking advantage of this newly developed animal model, we assessed whether the intracellular build-up of neuromelanin that occurs with age can be slowed down in vivo to prevent or attenuate Parkinson's disease. Because neuromelanin derives from the oxidation of free cytosolic dopamine, we enhanced dopamine vesicular encapsulation in the substantia nigra of neuromelanin-producing rats by viral vector-mediated overexpression of vesicular monoamine transporter 2 (VMAT2). This strategy reduced the formation of potentially toxic oxidized dopamine species that can convert into neuromelanin and maintained intracellular neuromelanin levels below their pathogenic threshold. Decreased neuromelanin production was associated with an attenuation of Lewy body-like inclusion formation and a long-term preservation of dopamine homeostasis, nigrostriatal neuronal integrity and motor function in these animals. Our results demonstrate the feasibility and therapeutic potential of modulating age-dependent intracellular neuromelanin production in vivo, thereby opening an unexplored path for the treatment of Parkinson's disease and, in a broader sense, brain ageing.


Asunto(s)
Enfermedad de Parkinson , Humanos , Ratas , Animales , Enfermedad de Parkinson/patología , Dopamina , Melaninas , Sustancia Negra/patología , Neuronas Dopaminérgicas/patología
2.
Metab Brain Dis ; 31(6): 1405-1417, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27406245

RESUMEN

Development of brain edema in acute liver failure can increase intracranial pressure, which is a severe complication of the disease. However, brain edema is neither entirely cytotoxic nor vasogenic and the specific action of the brain microvasculature is still unknown. We aimed to analyze gene expression of brain cortex microvessels in two rat models of acute liver failure. In order to identify global gene expression changes we performed a broad transcriptomic approach in isolated brain cortex microvessels from portacaval shunted rats after hepatic artery ligation (HAL), hepatectomy (HEP), or sham by array hybridization and confirmed changes in selected genes by RT-PCR. We found 157 and 270 up-regulated genes and 143 and 149 down-regulated genes in HAL and HEP rats respectively. Western blot and immunohistochemical assays were performed in cortex and ELISA assays to quantify prostaglandin E metabolites were performed in blood of the sagittal superior sinus. We Identified clusters of differentially expressed genes involving inflammatory response, transporters-channels, and homeostasis. Up-regulated genes at the transcriptional level were associated with vasodilation (prostaglandin-E synthetase, prostaglandin-E receptor, adrenomedullin, bradykinin receptor, adenosine transporter), oxidative stress (hemoxygenase, superoxide dismutase), energy metabolism (lactate transporter) and inflammation (haptoglobin). The only down-regulated tight junction protein was occludin but slightly. Prostaglandins levels were increased in cerebral blood with progression of liver failure. In conclusion, in acute liver failure, up-regulation of several genes at the level of microvessels might suggest an involvement of energy metabolism accompanied by cerebral vasodilation in the cerebral edema at early stages.


Asunto(s)
Edema Encefálico/metabolismo , Corteza Cerebral/metabolismo , Perfilación de la Expresión Génica/métodos , Fallo Hepático Agudo/metabolismo , Microvasos/metabolismo , Vasodilatación/fisiología , Animales , Edema Encefálico/genética , Edema Encefálico/patología , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Fallo Hepático Agudo/genética , Fallo Hepático Agudo/patología , Masculino , Microvasos/patología , Ratas , Ratas Sprague-Dawley
3.
NMR Biomed ; 28(1): 17-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25303736

RESUMEN

Intracranial hypertension is a severe complication of acute liver failure (ALF) secondary to brain edema. The pathogenesis of cerebral edema in ALF is not clear, but seems to be related to energy metabolism in which lactate may have an important role. The aim of this study was to follow the synthesis of brain lactate using a novel in vivo metabolic technology in a rat model of ALF. Time-resolved (13) C MRS of hyperpolarized (13) C1 -pyruvate was used to quantitatively follow the in vivo conversion of pyruvate to its substrates in a model of devascularized ALF in rats. Rats with ALF showed a significant increase in the lactate to pyruvate ratio from 36% to 69% during the progression of liver disease relative to rats with portocaval anastomosis. Rats with ALF also showed a significant increase in the alanine to pyruvate ratio from 72% to 95%. These increases were detectable at very early stages (6 h) when animals had no evident disease signs in their behavior (without loss of righting or corneal reflexes). This study shows the dynamic consequences of cerebral in vivo (13) C metabolism at real time in rats with ALF. The early detection of the de novo synthesis of lactate suggests that brain lactate is involved in the physiopathology of ALF. Hyperpolarization is a potential non-invasive technique to follow the in vivo metabolism, and both the development and optimization of (13) C-labeled substrates can clarify the mechanism involved in ALF.


Asunto(s)
Encéfalo/metabolismo , Carbono/metabolismo , Sistemas de Computación , Ácido Láctico/metabolismo , Fallo Hepático Agudo/metabolismo , Alanina/metabolismo , Animales , Isótopos de Carbono , Progresión de la Enfermedad , Masculino , Ácido Pirúvico/metabolismo , Ratas Sprague-Dawley
4.
J Clin Med ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337486

RESUMEN

Background: Histamine intolerance manifests when there is an imbalance between the production of histamine and the body's capacity to metabolise it. Within the gastrointestinal tract, diamine oxidase (DAO) plays a pivotal role in breaking down ingested histamine. Insufficient levels of DAO have been linked to various diseases affecting the respiratory, cardiovascular, nervous, muscular, and digestive systems; some of these symptoms are evidenced in fibromyalgia syndrome. This underscores the crucial role of DAO in maintaining the histamine balance and highlights its association with diverse physiological systems and health conditions. The management of fibromyalgia commonly involves the use of psychotropic medications; however, their potential interactions with DAO remain not fully elucidated. Methods: This study delved into the influence of various psychotropic medications on DAO activity through in vitro experiments. Additionally, we explored their impact on the human intestinal cell line Caco-2, examining alterations in DAO expression at both the mRNA and protein levels along with DAO activity. Results: Notably, the examined drugs-sertraline, pregabalin, paroxetine, alprazolam, and lorazepam-did not exhibit inhibitory effects on DAO activity or lead to reductions in DAO levels. In contrast, citalopram demonstrated a decrease in DAO activity in in vitro assays without influencing DAO levels and activity in human enterocytes. Conclusions: These findings imply that a collaborative approach involving psychotropic medications and DAO enzyme supplementation for individuals with fibromyalgia and a DAO deficiency could offer potential benefits for healthcare professionals in their routine clinical practice.

5.
Liver Int ; 33(2): 294-300, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23295057

RESUMEN

BACKGROUND & AIM: Acute-on-chronic liver failure is the term that refers to sustained liver injury with acute decompensation, usually induced by a precipitating factor. A common link between ensuing failures of various organs is impairment of the vascular supply, which may also induce vasogenic oedema in the brain. The aim of this study was to perform magnetic resonance (MR) study of the brain in a rat model combining bile duct ligation (BDL) and lipopolysaccharide (LPS) administration to investigate brain oedema in liver failure. METHODS: Bile duct-ligated rats underwent in vivo brain MR imaging at 4, 5 and 6 weeks, and after superimposed administration of LPS. The MR techniques applied enabled assessment of brain metabolites, and intra- or extracellular water distribution. Brain water content was assessed by gravimetry. RESULTS: MR spectroscopy showed an increase in brain glutamine and a decrease in myo-inositol and choline in relation to progression of liver disease. BDL rats showed a slight, progressive increase in the amount of cortical brain water that was significant after LPS injection. These changes did not modify the apparent diffusion coefficient, supporting a mixed origin of brain oedema (vasogenic and cytotoxic). CONCLUSIONS: The mechanisms leading to the development of brain oedema in an experimental liver disease model were related to the time course of liver failure and to pro-inflammatory stimuli. MR findings support the presence of cytotoxic and vasogenic mechanisms in induced brain oedema in BDL rats exposed to LPS.


Asunto(s)
Edema Encefálico/etiología , Edema Encefálico/patología , Fallo Hepático Agudo/complicaciones , Análisis de Varianza , Animales , Conductos Biliares/cirugía , Ligadura , Lipopolisacáridos , Fallo Hepático Agudo/fisiopatología , Espectroscopía de Resonancia Magnética/métodos , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
6.
J Clin Med ; 12(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37510782

RESUMEN

Histamine intolerance occurs when there is an imbalance between histamine production and the capacity for histamine degradation. Diamine oxidase (DAO) is the main enzyme for the catabolism of ingested histamine degradation in the gastrointestinal tract and its deficiency has been linked to allergy-like symptoms. Psychostimulant drugs are commonly used to treat Attention Deficit Hyperactivity Disorder (ADHD), but their interaction with DAO is not well characterized. In this work, we evaluated the effects of psychostimulant drugs (methylphenidate and lisdexamfetamine) on in vitro DAO activity and in the human cell line of enterocytes (Caco-2), evaluating DAO expression (mRNA and protein) and DAO activity. Methylphenidate and lisdexamfetamine did not repress the in vitro DAO activity. In addition, in Caco-2 cells, lisdexamfetamine promoted a strong upregulation of DAO mRNA levels, whereas methylphenidate tended to induce DAO activity. To sum up, methylphenidate and lisdexamfetamine treatments do not reduce DAO activity. These findings could be useful for physicians prescribing these two drugs to ADHD patients affected by DAO deficiency.

7.
J Clin Med ; 12(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38068554

RESUMEN

Histamine intolerance arises when there is a disparity between the production of histamine and the body's ability to break it down. In the gastrointestinal tract, the primary enzyme responsible for metabolizing ingested histamine is diamine oxidase (DAO), and a shortage of this enzyme has been associated with some diseases related to the respiratory, cardiovascular, nervous, muscular, and digestive systems, in addition to migraines. The treatment of migraines typically revolves around the utilization of both anti-migraine and anti-inflammatory drugs, but their interaction with DAO is not thoroughly understood. In this study, we examined the impact of nonsteroidal anti-inflammatory drugs (NSAIDs) and anti-migraine medications on DAO activity through in vitro experiments. We also investigated their effects on the human intestinal cell line Caco-2, assessing changes in DAO expression (both at the mRNA and protein levels) as well as DAO activity. The tested drugs, including ibuprofen, acetylsalicylic acid, paracetamol, a combination of acetylsalicylic acid with paracetamol and caffeine, zolmitriptan, and sumatriptan, did not inhibit DAO activity or reduce their levels. However, naproxen reduced DAO protein levels in human enterocyte cultures while not affecting DAO activity. These results suggest that combining anti-inflammatory and anti-migraine drugs with DAO enzyme supplementation for migraine patients with DAO deficiency could be beneficial for healthcare professionals in their daily practice.

8.
Nutrients ; 15(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37447181

RESUMEN

Cognitive alterations are a common feature associated with many neurodegenerative diseases and are considered a major health concern worldwide. Cognitive alterations are triggered by microglia activation and oxidative/inflammatory processes in specific areas of the central nervous system. Consumption of bioactive compounds with antioxidative and anti-inflammatory effects, such as astaxanthin and spirulina, can help in preventing the development of these pathologies. In this study, we have investigated the potential beneficial neuroprotective effects of a low dose of astaxanthin (ASX) microencapsulated within spirulina (ASXSP) in female rats to prevent the cognitive deficits associated with the administration of LPS. Alterations in memory processing were evaluated in the Y-Maze and Morris Water Maze (MWM) paradigms. Changes in microglia activation and in gut microbiota content were also investigated. Our results demonstrate that LPS modified long-term memory in the MWM and increased microglia activation in the hippocampus and prefrontal cortex. Preventive treatment with ASXSP ameliorated LPS-cognitive alterations and microglia activation in both brain regions. Moreover, ASXSP was able to partially revert LPS-induced gut dysbiosis. Our results demonstrate the neuroprotective benefits of ASX when microencapsulated with spirulina acting through different mechanisms, including antioxidant, anti-inflammatory and, probably, prebiotic actions.


Asunto(s)
Disfunción Cognitiva , Spirulina , Humanos , Ratas , Femenino , Animales , Lipopolisacáridos/farmacología , Polvos , Trastornos de la Memoria/inducido químicamente , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/tratamiento farmacológico , Antioxidantes/uso terapéutico , Antiinflamatorios/uso terapéutico
9.
J Hepatol ; 56(1): 109-14, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21835138

RESUMEN

BACKGROUND & AIMS: Ornithine phenylacetate (OP) is a new drug that has been proposed for the treatment of hepatic encephalopathy (HE) because it decreases plasma ammonia. We performed a study to assess if OP would impact on neuronal function. METHODS: Motor-evoked potentials (MEP), a surrogate of hepatic encephalopathy, were assessed (without anesthesia) in rats with portacaval anastomosis (PCA) that received gastrointestinal blood (GIB). Rats were pre-treated with OP prior to GIB. Ammonia and related metabolites (plasma, urine, and brain microdialysis) were assessed by HPLC and mass spectroscopy. RESULTS: OP (one dose or 3 days) prevented disturbances in MEP induced by GIB in PCA rats. In rats treated with OP for 3 days, the amplitude and latency of MEP remained stable (-1% and +1%), while in the control group the amplitude decreased -21% and the latency increased +12% (p<0.01). OP attenuated the rise of ammonia in plasma by 45%, ammonia in brain microdialysate by 48%, induced a faster glutamine rise and the appearance of phenylacetylglutamine in plasma and urine. In addition, OP was associated with a lower concentration of ammonia and glutamate in brain microdialysate (approx. 50%). CONCLUSIONS: OP prevents abnormalities in MEP precipitated by GIB in a model of HE. This is probably due to the enhancement of glutamine synthesis and metabolism, which results in a lower rise of plasma ammonia and the prevention of changes in glutamate in microdialysate. Thus, OP may be a good drug to prevent HE precipitated by gastrointestinal bleeding.


Asunto(s)
Potenciales Evocados Motores/efectos de los fármacos , Encefalopatía Hepática/tratamiento farmacológico , Ornitina/análogos & derivados , Ornitina/administración & dosificación , Ornitina/farmacología , Fenilacetatos/administración & dosificación , Aminoácidos/metabolismo , Amoníaco/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Glutamina/análogos & derivados , Glutamina/sangre , Encefalopatía Hepática/sangre , Encefalopatía Hepática/etiología , Encefalopatía Hepática/fisiopatología , Masculino , Fenilacetatos/sangre , Derivación Portocava Quirúrgica/efectos adversos , Ratas , Ratas Sprague-Dawley
10.
Gastroenterology ; 138(4): 1566-73, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19843475

RESUMEN

BACKGROUND & AIMS: Brain edema is a severe complication of acute liver failure (ALF) that has been related to ammonia concentrations. Two mechanisms have been proposed in the pathogenesis: vasogenic edema that is secondary to the breakdown of the blood-brain barrier and cytotoxic edema caused by ammonia metabolites in astrocytes. METHODS: We applied magnetic resonance techniques to assess the intracellular or extracellular distribution of brain water and metabolites in a rat model of devascularized ALF. The brain water content was assessed by gravimetry and blood-brain barrier permeability was determined from the transfer constant of (14)C-labeled sucrose. RESULTS: Rats with ALF had a progressive decrease in the apparent diffusion coefficient (ADC) in all brain regions. The average decrease in ADC was significant in precoma (-14%) and coma stages (-20%). These changes, which indicate an increase of the intracellular water compartment, were followed by a significant increase in total brain water (coma 82.4% +/- 0.3% vs sham 81.6% +/- 0.3%; P = .0001). Brain concentrations of glutamine (6 hours, 540%; precoma, 851%; coma, 1086%) and lactate (6 hours, 166%; precoma, 998%; coma, 3293%) showed a marked increase in ALF that paralleled the decrease in ADC and neurologic outcome. In contrast, the transfer constant of (14)C-sucrose was unaltered. CONCLUSIONS: The pathogenesis of brain edema in an experimental model of ALF involves a cytotoxic mechanism: the metabolism of ammonia in astrocytes induces an increase of glutamine and lactate that appears to mediate cellular swelling. Therapeutic measures should focus on removing ammonia and improving brain energy metabolism.


Asunto(s)
Amoníaco/metabolismo , Astrocitos/metabolismo , Edema Encefálico/etiología , Encéfalo/metabolismo , Imagen de Difusión Tensora , Fallo Hepático Agudo/complicaciones , Animales , Barrera Hematoencefálica , Glutamina/metabolismo , Ácido Láctico/metabolismo , Fallo Hepático Agudo/metabolismo , Masculino , Permeabilidad , Ratas , Ratas Sprague-Dawley
11.
Hepatology ; 52(6): 2077-85, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20890898

RESUMEN

UNLABELLED: Experimental models of hepatic encephalopathy (HE) are limited by difficulties in objectively monitoring neuronal function. There are few models that examine a well-defined neuronal pathway and lack the confounding effects of anesthetics. Motor-evoked potentials (MEPs) assess the function of the motor tract, which has been shown to be impaired in patients with cirrhosis. MEPs were elicited by cranial stimulation (central) and compound motor action potential by sciatic nerve stimulation (peripheral) in several models of HE in the rat. The experiments were performed using subcutaneous electrodes without anesthetics. Brain water content was assessed by gravimetry, brain metabolites were measured by magnetic resonance spectroscopy, and amino acids in microdialysates from the frontal cortex were analyzed by high-performance liquid chromatography. Abnormalities of MEP were observed in acute liver failure (ALF) induced by hepatic devascularization in relation to the progression of neurological manifestations. Similar disturbances were seen in rats with portocaval anastomosis after the administration of blood or lipopolysaccharide, but were absent in rats with biliary duct ligation. Hypothermia (≤35°C) and mannitol prevented the development of brain edema in acute liver failure, but only hypothermia avoided the decrease in the amplitude of MEP. Disturbances of MEP caused by the administration of blood into the gastrointestinal tract in rats with portocaval anastomosis were associated with an increase in ammonia, glutamine, and glutamate in brain microdialysate. CONCLUSION: Assessment of MEP in awake rats is a valid method to monitor HE in models of ALF and precipitated HE. This method shows the lack of efficacy of mannitol, a therapy that decreases brain edema, and relates disturbances of the function of the motor tract to ammonia and its metabolites.


Asunto(s)
Potenciales Evocados Motores , Encefalopatía Hepática/fisiopatología , Animales , Edema Encefálico/prevención & control , Potenciales Evocados Motores/efectos de los fármacos , Encefalopatía Hepática/etiología , Fallo Hepático Agudo , Masculino , Manitol/uso terapéutico , Derivación Portocava Quirúrgica/efectos adversos , Ratas , Ratas Sprague-Dawley
12.
ACS Nano ; 15(5): 8592-8609, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33885286

RESUMEN

Dopamine (DA) is one of the main neurotransmitters found in the central nervous system and has a vital role in the function of dopaminergic (DArgic) neurons. A progressive loss of this specific subset of cells is one of the hallmarks of age-related neurodegenerative disorders such as Parkinson's disease (PD). Symptomatic therapy for PD has been centered in the precursor l-DOPA administration, an amino acid precursor of DA that crosses the blood-brain barrier (BBB) while DA does not, although this approach presents medium- to long-term side effects. To overcome this limitation, DA-nanoencapsulation therapies are actively being searched as an alternative for DA replacement. However, overcoming the low yield of encapsulation and/or poor biodistribution/bioavailability of DA is still a current challenge. Herein, we report the synthesis of a family of neuromelanin bioinspired polymeric nanoparticles. Our system is based on the encapsulation of DA within nanoparticles through its reversible coordination complexation to iron metal nodes polymerized with a bis-imidazol ligand. Our methodology, in addition to being simple and inexpensive, results in DA loading efficiencies of up to 60%. In vitro, DA nanoscale coordination polymers (DA-NCPs) exhibited lower toxicity, degradation kinetics, and enhanced uptake by BE(2)-M17 DArgic cells compared to free DA. Direct infusion of the particles in the ventricle of rats in vivo showed a rapid distribution within the brain of healthy rats, leading to an increase in striatal DA levels. More importantly, after 4 days of nasal administrations with DA-NCPs equivalent to 200 µg of the free drug per day, the number and duration of apomorphine-induced rotations was significantly lower from that in either vehicle or DA-treated rats performed for comparison purposes. Overall, this study demonstrates the advantages of using nanostructured DA for DA-replacement therapy.


Asunto(s)
Nanopartículas , Enfermedad de Parkinson , Administración Intranasal , Animales , Dopamina , Enfermedad de Parkinson/tratamiento farmacológico , Polímeros/uso terapéutico , Medicina de Precisión , Ratas , Distribución Tisular
13.
ACS Chem Neurosci ; 11(17): 2679-2687, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786306

RESUMEN

Dopamine is a key neurotransmitter in the pathophysiology of various neurological disorders such as addiction or Parkinson's disease. Disturbances in its metabolism could lead to dopamine accumulation in the cytoplasm and an increased production of o-quinones and their derivatives, which have neurotoxic potential and act as precursors in neuromelanin synthesis. Thus, quantification of the dopaminergic metabolism is essential for monitoring changes that may contribute to disease development. Here, we developed and validated an UPLC-MS/MS method to detect and quantify a panel of eight dopaminergic metabolites, including the oxidation product aminochrome. Our method was validated in differentiated SH-SY5Y cells and mouse brain tissue and was then employed in brain samples from humans and rats to ensure method reliability in different matrices. Finally, to prove the biological relevance of our method, we determined metabolic changes in an in vitro cellular model of dopamine oxidation/neuromelanin production and in human postmortem samples from Parkinson's disease patients. The current study provides a validated method to simultaneously monitor possible alterations in dopamine degradation and o-quinone production pathways that can be applied to in vitro and in vivo experimental models of neurological disorders and human brain samples.


Asunto(s)
Dopamina , Espectrometría de Masas en Tándem , Animales , Encéfalo , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Humanos , Ratones , Ratas , Reproducibilidad de los Resultados
14.
Nat Commun ; 10(1): 973, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846695

RESUMEN

In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.


Asunto(s)
Encéfalo/metabolismo , Melaninas/biosíntesis , Monofenol Monooxigenasa/metabolismo , Enfermedad de Parkinson/metabolismo , Envejecimiento/metabolismo , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Humanos , Cuerpos de Lewy/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monofenol Monooxigenasa/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sustancia Negra/metabolismo , alfa-Sinucleína/deficiencia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
15.
Int J Cancer ; 122(6): 1422-5, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18027849

RESUMEN

Familial adenomatous polyposis (FAP) is an autosomal dominant syndrome predisposing to colorectal cancer and affects 1 in 5-10,000 births. Inheritance of a mutant allele of the adenomatous polyposis coli (APC) gene is the cause of approximately 80% of FAP and 20-30% of an attenuated form of FAP (AFAP), whereas mutations in MUTYH account for a small proportion of the remaining cases. However, the genetic cause of FAP/AFAP in a significant number of families is not known, and cancer risk for individual members of these families cannot be assessed. There is, therefore, an acute need to identify the underlying genetic cause responsible for FAP/AFAP in APC/MUTYH mutation negative families. Hypermethylation of CpG islands in the promoter of tumor suppressor genes can result in gene silencing, has been shown to be functionally equivalent to genetic mutations and can be inherited. Moreover, APC promoter hypermethylation is observed in approximately 20% of sporadic colorectal tumors and correlates with the loss of gene expression. In our study, we used bisulfite treatment and direct sequencing of 2 regulatory regions of APC containing a total of 25 CpG dinucleotides, to investigate the possible role of germline hypermethylation of the APC promoter in FAP and AFAP families that were negative for APC and MUTYH mutations. Analysis of 21 FAP and 39 AFAP families did not identify signs of abnormal promoter methylation, indicating that this form of epigenetic silencing is not a common cause of FAP/AFAP. These results substantially contribute to clarify the potential role of germline epimutations as a cause of inherited predisposition to cancer.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , ADN Glicosilasas/genética , Metilación de ADN , Genes APC , Mutación de Línea Germinal , Regiones Promotoras Genéticas , Secuencia de Bases , Islas de CpG , Cartilla de ADN , Humanos
16.
Cancer Res ; 66(18): 8943-8, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16982731

RESUMEN

The family of receptor tyrosine kinases EPH and their Ephrin ligands regulate cell proliferation, migration, and attachment. An important role in colorectal carcinogenesis is emerging for some of its members. In this study, we evaluate the role of EPHB4 in colorectal cancer and its value as a prognostic marker. EPHB4 levels were assessed by immunohistochemical staining of tissue microarrays of 137 colorectal tumors and aberrant hypermethylation of the EPHB4 promoter was investigated using methylation-specific PCR. We found that EPHB4 expression is frequently reduced or lost in colorectal tumors. Patients with low EPHB4 tumor levels had significantly shorter survival than patients in the high EPHB4 group (median survival, 1.8 and >9 years, respectively; P < 0.01, log-rank test), and this finding was validated using an independent set of 125 tumor samples. In addition, we show that EPHB4 promoter hypermethylation is a common mechanism of EPHB4 inactivation. Moreover, reintroduction of EPHB4 resulted in a significant reduction in the clonogenic potential of EPHB4-deficient cells, whereas abrogation of EPHB4 in cells with high levels of this receptor lead to a significant increase in clonogenicity. In summary, we identified EPHB4 as a useful prognostic marker for colorectal cancer. In addition, we provide mechanistic evidence showing that promoter methylation regulates EPHB4 transcription and functional evidence that EPHB4 can regulate the long-term clonogenic potential of colorectal tumor cells, revealing EPHB4 as a potential new tumor suppressor gene in colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Receptor EphB4/biosíntesis , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Metilación de ADN , Regulación hacia Abajo , Genes Supresores de Tumor , Células HT29 , Humanos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Pronóstico , Regiones Promotoras Genéticas , Receptor EphB4/genética , Factores de Riesgo
17.
Cell Death Dis ; 9(11): 1122, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405116

RESUMEN

Mitochondria are the prime energy source in most eukaryotic cells, but these highly dynamic organelles are also involved in a multitude of cellular events. Disruption of mitochondrial homeostasis and the subsequent mitochondrial dysfunction plays a key role in the pathophysiology of Parkinson's disease (PD). Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for neuronal survival. Here, we have studied the mitochondrial protein import system in in vitro and in vivo models of PD. Complex I inhibition, a characteristic pathological hallmark in PD, impaired mitochondrial protein import, which was associated with a downregulation of two key components of the system: translocase of the outer membrane 20 (TOM20) and translocase of the inner membrane 23 (TIM23), both in vitro and in vivo. In vitro, those changes were associated with OXPHOS protein downregulation, accumulation of aggregated proteins inside mitochondria and downregulation of mitochondrial chaperones. Most of these pathogenic changes, including mitochondrial dysfunction and dopaminergic cell death, were abrogated by TOM20 or TIM23 overexpression, in vitro. However, in vivo, while TOM20 overexpression exacerbated neurodegeneration in both substantia nigra (SN) pars compacta (pc) and striatum, overexpression of TIM23 partially protected dopaminergic neurons in the SNpc. These results highlight mitochondrial protein import dysfunction and the distinct role of two of their components in the pathogenesis of PD and suggest the need for future studies to further characterize mitochondrial protein import deficit in the context of PD.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Proteínas de Transporte de Membrana/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Enfermedad de Parkinson/genética , Trastornos Parkinsonianos/genética , Receptores de Superficie Celular/genética , Animales , Línea Celular Tumoral , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Complejo I de Transporte de Electrón/deficiencia , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas de Transporte de Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Neuronas/metabolismo , Neuronas/patología , Fosforilación Oxidativa , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Agregado de Proteínas , Transporte de Proteínas , Receptores de Superficie Celular/deficiencia , Transducción de Señal
18.
J Cereb Blood Flow Metab ; 37(3): 927-937, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27154504

RESUMEN

Hepatic encephalopathy has traditionally been considered a reversible disorder. However, recent studies suggested that repeated episodes of hepatic encephalopathy cause persistent impairment leading to neuronal loss. The aims of our study were the development of a new animal model that reproduces the course of episodic hepatic encephalopathy and the identification of neurodegeneration evidences. Rats with portacaval anastomosis underwent simulated episodes of hepatic encephalopathy, triggered by the regular administration of ammonium acetate, and/or lipopolysaccharide. The neurological status was assessed and neuronal loss stereologically quantified in motor areas. During the simulated episodes, ammonia induced reversible motor impairment in portacaval anastomosis rats. In cerebellum, stereology showed a reduction in Purkinje cell population in portacaval anastomosis and PCA+NH3 groups and morphological changes. An increase in astrocyte size in PCA+NH3 group and activated microglia in groups treated with ammonium acetate and/or lipopolysaccharide was observed. A modulation of neurodegeneration-related genes and the presence of apoptosis in Bergmann glia were observed. This new animal model reproduces the clinical course of episodic hepatic encephalopathy when ammonia is the precipitant factor and demonstrates the existence of neuronal loss in cerebellum. The persistence of over-activated microglia and reactive astrocytes could participate in the apoptosis of Bergmann glia and therefore Purkinje cell degeneration.


Asunto(s)
Cerebelo/patología , Encefalopatía Hepática/patología , Enfermedades Neurodegenerativas/patología , Acetatos/administración & dosificación , Acetatos/farmacología , Animales , Astrocitos/patología , Modelos Animales de Enfermedad , Encefalopatía Hepática/inducido químicamente , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/farmacología , Microglía/patología , Neuronas/patología , Células de Purkinje/patología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA