Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(8): 11951-11965, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34558043

RESUMEN

Mangroves play an essential role in the global carbon cycle. However, they are highly vulnerable to degradation with little-known effects on greenhouse gas (GHG) emissions. This study compared seasonal soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes from a black mangrove (Avicennia germinans) forest in the Tampamachoco coastal lagoon, Veracruz, Mexico, in areas subjected to different degrees of environmental degradation (full canopy, transitional and dead mangrove), caused by hydrological perturbation. Furthermore, we aimed at determining the environmental factors driving seasonal fluxes. There was a combined effect of seasonality and degradation on CH4 fluxes, highest during the rainy season in the dead mangrove (0.93 ± 0.18 mg CH4 m-2 h-1). CO2 fluxes were highest during the dry season (220 ± 23 mg CO2 m-2 h-1), with no significant differences among degradation levels. N2O fluxes did not vary among seasons or degradation levels (- 3.8 to 2.9 mg N2O m-2 h-1). The overall CO2-eq emission rate was 15.3 ± 2.7 Mg CO2-eq ha-1 year-1, with CO2 as the main gas contributing to total emissions. The main factors controlling CH4 fluxes were seasonal porewater salinity and the availability of NO2-, NO3-, and SO4-2 in the soil, favored by high water level and temperature in the absence of pneumatophores. The main determining factors controlling CO2 fluxes were water level, porewater redox potential, and soil Cl- and SO4-2 concentration. Finally, N2O fluxes were related to NO2-, NO3-, and SO4-2 soil concentrations. This study contributes to improving the knowledge of soil GHG fluxes dynamics in mangroves and the effect of degradation of these ecosystems on the coastal biogeochemical cycles, which may bring important insights for assessing accurate ways to mitigate climate change protecting and restoring these ecosystems.


Asunto(s)
Avicennia , Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Ecosistema , Monitoreo del Ambiente , Bosques , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis , Estaciones del Año , Suelo , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA