Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
PLoS Genet ; 18(9): e1010351, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36048878

RESUMEN

Advances in genomic technology led to a more focused pattern for the distribution of chromosomal proteins and a better understanding of their functions. The recent development of the CUT&RUN technique marks one of the important such advances. Here we develop a modified CUT&RUN technique that we termed nanoCUT&RUN, in which a high affinity nanobody to GFP is used to bring micrococcal nuclease to the binding sites of GFP-tagged chromatin proteins. Subsequent activation of the nuclease cleaves the chromatin, and sequencing of released DNA identifies binding sites. We show that nanoCUT&RUN efficiently produces high quality data for the TRL transcription factor in Drosophila embryos, and distinguishes binding sites specific between two TRL isoforms. We further show that nanoCUT&RUN dissects the distributions of the HipHop and HOAP telomere capping proteins, and uncovers unexpected binding of telomeric proteins at centromeres. nanoCUT&RUN can be readily applied to any system in which a chromatin protein of interest, or its isoforms, carries the GFP tag.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Telómero/genética , Telómero/metabolismo , Factores de Transcripción/genética
2.
PLoS Genet ; 17(11): e1009925, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34813587

RESUMEN

Drosophila chromosomes are elongated by retrotransposon attachment, a process poorly understood. Here we characterized a mutation affecting the HipHop telomere-capping protein. In mutant ovaries and the embryos that they produce, telomere retrotransposons are activated and transposon RNP accumulates. Genetic results are consistent with that this hiphop mutation weakens the efficacy of HP1-mediated silencing while leaving piRNA-based mechanisms largely intact. Remarkably, mutant females display normal fecundity suggesting that telomere de-silencing is compatible with germline development. Moreover, unlike prior mutants with overactive telomeres, the hiphop stock does not over-accumulate transposons for hundreds of generations. This is likely due to the loss of HipHop's abilities both to silence transcription and to recruit transposons to telomeres in the mutant. Furthermore, embryos produced by mutant mothers experience a checkpoint activation, and a further loss of maternal HipHop leads to end-to-end fusion and embryonic arrest. Telomeric retroelements fulfill an essential function yet maintain a potentially conflicting relationship with their Drosophila host. Our study thus showcases a possible intermediate in this arm race in which the host is adapting to over-activated transposons while maintaining genome stability. Our results suggest that the collapse of such a relationship might only occur when the selfish element acquires the ability to target non-telomeric regions of the genome. HipHop is likely part of this machinery restricting the elements to the gene-poor region of telomeres. Lastly, our hiphop mutation behaves as a recessive suppressor of PEV that is mediated by centric heterochromatin, suggesting its broader effect on chromatin not limited to telomeres.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Retroelementos/genética , Elementos Silenciadores Transcripcionales/genética , Telómero/genética , Animales , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Drosophila melanogaster/genética , Femenino , Inestabilidad Genómica/genética , Células Germinativas/metabolismo , Heterocromatina/genética , Mutación , ARN Interferente Pequeño/genética
3.
PLoS Genet ; 16(10): e1009098, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33085660

RESUMEN

The 2,2,7-trimethylguanosine (TMG) cap is one of the first identified modifications on eukaryotic RNAs. TMG, synthesized by the conserved Tgs1 enzyme, is abundantly present on snRNAs essential for pre-mRNA splicing. Results from ex vivo experiments in vertebrate cells suggested that TMG ensures nuclear localization of snRNAs. Functional studies of TMG using tgs1 mutations in unicellular organisms yield results inconsistent with TMG being indispensable for either nuclear import or splicing. Utilizing a hypomorphic tgs1 mutation in Drosophila, we show that TMG reduction impairs germline development by disrupting the processing, particularly of introns with smaller sizes and weaker splice sites. Unexpectedly, loss of TMG does not disrupt snRNAs localization to the nucleus, disputing an essential role of TMG in snRNA transport. Tgs1 loss also leads to defective 3' processing of snRNAs. Remarkably, stronger tgs1 mutations cause lethality without severely disrupting splicing, likely due to the preponderance of TMG-capped snRNPs. Tgs1, a predominantly nucleolar protein in Drosophila, likely carries out splicing-independent functions indispensable for animal development. Taken together, our results suggest that nuclear import is not a conserved function of TMG. As a distinctive structure on RNA, particularly non-coding RNA, we suggest that TMG prevents spurious interactions detrimental to the function of RNAs that it modifies.


Asunto(s)
Caperuzas de ARN/genética , Empalme del ARN/genética , ARN Mensajero/genética , ARN Nuclear Pequeño/genética , Animales , Drosophila melanogaster/genética , Guanosina/análogos & derivados , Guanosina/genética , Guanosina/metabolismo , Intrones/genética , Larva/genética , Larva/crecimiento & desarrollo , Metiltransferasas/genética , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN/métodos , Empalmosomas/genética
4.
Yi Chuan ; 45(3): 221-228, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36927648

RESUMEN

Linear chromosomes of eukaryotes are protected by a DNA-protein-RNA structure called telomere. Remarkably and unlike those of most organisms studied, Drosophila telomeric DNA is not composed of a group of short repeats, but three classes of retrotransposons at the chromosome ends. Telomeric transposons in Drosophila on the other hand serves the function of elongating the host chromosomes yet prevent little harm to the host genome as their insertion sites are strictly limited to the telomere. How the Drosophila host achieves such precise regulation is still unclear. The currently known genome-wide repression of transposon expression includes piRNA pathway and the heterochromatin pathway involving H3K9me3. Recent studies have found that Drosophila telomere capping proteins are involved in the specific regulation of telomeric retrotransposons. In this review, we discuss the specific functions of telomere capping proteins in regulating telomeric transposons. By studying how the Drosophila host interacts and regulates telomeric transposons, we hope to shed lights on universal principles in guiding their co-evolution.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Retroelementos/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Drosophila/genética , ARN , Secuencia de Bases
5.
PLoS Genet ; 15(5): e1008169, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31100062

RESUMEN

The Pol32 protein is one of the universal subunits of DNA polymerase δ (Pol δ), which is responsible for genome replication in eukaryotic cells. Although the role of Pol32 in DNA repair has been well-characterized, its exact function in genome replication remains obscure as studies in single cell systems have not established an essential role for Pol32 in the process. Here we characterize Pol32 in the context of Drosophila melanogaster development. In the rapidly dividing embryonic cells, loss of Pol32 halts genome replication as it specifically disrupts Pol δ localization to the nucleus. This function of Pol32 in facilitating the nuclear import of Pol δ would be similar to that of accessory subunits of DNA polymerases from mammalian Herpes viruses. In post-embryonic cells, loss of Pol32 reveals mitotic fragile sites in the Drosophila genome, a defect more consistent with Pol32's role as a polymerase processivity factor. Interestingly, these fragile sites do not favor repetitive sequences in heterochromatin, with the rDNA locus being a striking exception. Our study uncovers a possibly universal function for DNA polymerase ancillary factors and establishes a powerful system for the study of chromosomal fragile sites in a non-mammalian organism.


Asunto(s)
Sitios Frágiles del Cromosoma/fisiología , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Animales , Sitios Frágiles del Cromosoma/genética , Fragilidad Cromosómica/genética , Fragilidad Cromosómica/fisiología , Reparación del ADN , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Mutagénesis , Señales de Localización Nuclear/metabolismo , Unión Proteica
6.
EMBO Rep ; 18(8): 1412-1428, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28615293

RESUMEN

Repetitive DNA is prone to replication fork stalling, which can lead to genome instability. Here, we find that replication fork stalling at telomeres leads to the formation of t-circle-tails, a new extrachromosomal structure that consists of circular telomeric DNA with a single-stranded tail. Structurally, the t-circle-tail resembles cyclized leading or lagging replication intermediates that are excised from the genome by topoisomerase II-mediated cleavage. We also show that the DNA damage repair machinery NHEJ is required for the formation of t-circle-tails and for the resolution of stalled replication forks, suggesting that NHEJ, which is normally constitutively suppressed at telomeres, is activated in the context of replication stress. Inhibition of NHEJ or knockout of DNA-PKcs impairs telomere replication, leading to multiple-telomere sites (MTS) and telomere shortening. Collectively, our results support a "looping-out" mechanism, in which the stalled replication fork is cut out and cyclized to form t-circle-tails, and broken DNA is religated. The telomere loss induced by replication stress may serve as a new factor that drives replicative senescence and cell aging.


Asunto(s)
Replicación del ADN , Acortamiento del Telómero , Telómero/fisiología , Senescencia Celular , Reparación del ADN por Unión de Extremidades , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Circular/química , ADN Circular/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Inestabilidad Genómica , Humanos , Conformación de Ácido Nucleico , Telómero/genética
7.
Nature ; 493(7433): 557-60, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23151475

RESUMEN

RNA interference (RNAi) is a conserved mechanism in which small interfering RNAs (siRNAs) guide the degradation of cognate RNAs, but also promote heterochromatin assembly at repetitive DNA elements such as centromeric repeats. However, the full extent of RNAi functions and its endogenous targets have not been explored. Here we show that, in the fission yeast Schizosaccharomyces pombe, RNAi and heterochromatin factors cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembrane proteins, and retrotransposons that are also targeted by the exosome RNA degradation machinery. In the absence of the exosome, transcripts are processed preferentially by the RNAi machinery, revealing siRNA clusters and a corresponding increase in heterochromatin modifications across large domains containing genes and retrotransposons. We show that the generation of siRNAs and heterochromatin assembly by RNAi is triggered by a mechanism involving the canonical poly(A) polymerase Pla1 and an associated RNA surveillance factor Red1, which also activate the exosome. Notably, siRNA production and heterochromatin modifications at these target loci are regulated by environmental growth conditions, and by developmental signals that induce gene expression during sexual differentiation. Our analyses uncover an interaction between RNAi and the exosome that is conserved in Drosophila, and show that differentiation signals modulate RNAi silencing to regulate developmental genes.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Interferencia de ARN , Retroelementos/genética , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/genética , Diferenciación Sexual/genética , Animales , Drosophila melanogaster/genética , Exoma/genética , Heterocromatina/genética , Familia de Multigenes/genética , Polinucleotido Adenililtransferasa/genética , Estabilidad del ARN/genética , ARN de Hongos/genética , ARN Interferente Pequeño/genética , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
PLoS Genet ; 12(11): e1006435, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27835648

RESUMEN

Multiple complexes protect telomeres. In telomerase-maintained organisms, Shelterin related complexes occupy the duplex region while the CST and Tpp1-Pot1 complexes bind the single stranded overhang of telomeres. Drosophila uses a transposon-based mechanism for end protection. We showed that the HOAP-HipHop complex occupies the duplex region. Whether an ssDNA-binding complex exists is not known. Here we discover a novel protein, Tea, that is specifically enriched at telomeres to prevent telomere fusion. We also identify a complex consisting of Tea and two known capping proteins, Ver and Moi. The Moi-Tea-Ver (MTV) complex purified in vitro binds and protects ssDNA in a sequence-independent manner. Tea recruits Ver and Moi to telomeres, and point mutations disrupting MTV interaction in vitro result in telomere uncapping, consistent with these proteins functioning as a complex in vivo. MTV thus shares functional similarities with CST or TPP1-POT1 in protecting ssDNA, highlighting a conserved feature in end protecting mechanisms.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , ADN de Cadena Simple/genética , Proteínas de Drosophila/genética , Factores de Crecimiento Nervioso/genética , Homeostasis del Telómero/genética , Animales , Proteínas Portadoras/genética , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Mutación Puntual/genética , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/genética , Telomerasa/genética , Telómero/genética
9.
EMBO J ; 33(10): 1148-58, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24733842

RESUMEN

In Drosophila, a group of retrotransposons is mobilized exclusively to telomeres in a sequence-independent manner. How they target chromosome ends is not understood. Here, we focused on the telomeric element HeT-A and characterized the cell cycle expression and cytological distribution of its protein and RNA products. We determined the timing of telomere replication by creating a single lacO-marked telomere and provide evidence suggesting that transposon expression and recruitment to telomeres is linked to telomere replication. The HeT-A-encoded ORF1p protein is expressed predominantly in S phase, particularly in early S phase. Orf1p binds HeT-A transcripts and forms spherical structures at telomeres undergoing DNA replication. HeT-A sphere formation requires Verrocchio, a putative homolog of the conserved Stn1 telomeric protein. Our results suggest that coupling of telomere elongation and telomere replication is a universal feature, and raise the possibility that transposon recruitment to Drosophila telomeres is mechanistically related to telomerase recruitment in other organisms. Our study also supports a co-adaptive relationship between the Drosophila host and HeT-A mobile elements.


Asunto(s)
Replicación del ADN/fisiología , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica , Retroelementos/genética , Telómero/genética , Animales , Replicación del ADN/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Productos del Gen gag/genética , Productos del Gen gag/metabolismo
10.
PLoS Genet ; 8(4): e1002659, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22532806

RESUMEN

In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis.


Asunto(s)
ADN Polimerasa III , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN , Reparación del ADN por Recombinación/genética , Animales , Roturas del ADN de Doble Cadena , ADN Polimerasa III/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Mutantes
11.
EMBO J ; 29(4): 819-29, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20057353

RESUMEN

Telomeres prevent chromosome ends from being repaired as double-strand breaks (DSBs). Telomere identity in Drosophila is determined epigenetically with no sequence either necessary or sufficient. To better understand this sequence-independent capping mechanism, we isolated proteins that interact with the HP1/ORC-associated protein (HOAP) capping protein, and identified HipHop as a subunit of the complex. Loss of one protein destabilizes the other and renders telomeres susceptible to fusion. Both HipHop and HOAP are enriched at telomeres, where they also interact with the conserved HP1 protein. We developed a model telomere lacking repetitive sequences to study the distribution of HipHop, HOAP and HP1 using chromatin immunoprecipitation (ChIP). We discovered that they occupy a broad region >10 kb from the chromosome end and their binding is independent of the underlying DNA sequence. HipHop and HOAP are both rapidly evolving proteins yet their telomeric deposition is under the control of the conserved ATM and Mre11-Rad50-Nbs (MRN) proteins that modulate DNA structures at telomeres and at DSBs. Our characterization of HipHop and HOAP reveals functional analogies between the Drosophila proteins and subunits of the yeast and mammalian capping complexes, implicating conservation in epigenetic capping mechanisms.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Telómero/genética , Telómero/metabolismo , Animales , Sitios de Unión , Línea Celular , Proteínas Cromosómicas no Histona/química , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Evolución Molecular , Genes de Insecto , Complejos Multiproteicos , Mutación , Estructura Terciaria de Proteína , Subunidades de Proteína , Interferencia de ARN
12.
Proc Natl Acad Sci U S A ; 108(12): 4932-7, 2011 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383184

RESUMEN

Chromatin remodeling during sperm maturation could erase epigenetic landmarks on the paternal genome, creating a challenge for its reestablishment on fertilization. Here, we show that selective retention of a chromosomal protein in mature sperm protects the identity of paternal telomeres in Drosophila. The ms(3)k81 (k81) gene is a duplication of hiphop that encodes a telomeric protein. Although HipHop protects telomeres in somatic cells, K81 is produced exclusively in males and localizes to telomeres in postmitotic cells, including mature sperm. In embryos fathered by k81 mutants, the maternal supplies fail to reestablish a protective cap on paternal telomeres, leading to their fusions. These fusions hinder the segregation of the paternal genome and result in haploid embryos with maternal chromosomes. The functional divergence between hiphop and k81 manifests not only in their expression patterns but also in the protein functions that they encode. By swapping the two coding regions, we show that K81 can replace HipHop for somatic protection; however, HipHop cannot replace K81 in the germ line to specify telomere identity, because HipHop ectopically expressed in the testis is removed from chromatin during sperm maturation. HipHop lacks a short motif in K81 that is essential for K81 to survive the remodeling process. We show that the combined functions of HipHop and K81 are likely fulfilled by the single ancestral hiphop locus in other Drosophila species, supporting the hypothesis that the evolutionary process of subfunctionalization was responsible for the preservation of the hiphop-k81 duplicate.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Cromosomas de Insectos/metabolismo , Proteínas de Drosophila/metabolismo , Impresión Genómica , Maduración del Esperma/fisiología , Telómero/metabolismo , Animales , Línea Celular , Cromosomas de Insectos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrión no Mamífero , Evolución Molecular , Masculino , Telómero/genética
13.
Biochim Biophys Acta ; 1819(7): 771-5, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22342531

RESUMEN

Telomere serves two essential functions for the cell. It prevents the recognition of natural chromosome ends as DNA breaks (the end capping function). It counteracts incomplete end replication by adding DNA to the ends of chromosomes (the end elongation function). In most organisms studied, telomerase fulfills the end elongation function. In Drosophila, however, telomere specific retrotransposons have been coerced into performing this essential function for the host. In this review, we focus our discussion on transposition mechanisms and transcriptional regulation of these transposable elements, and present provocative models for the purpose of spurring new interests in the field. This article is part of a Special Issue entitled: Chromatin in time and space.


Asunto(s)
Drosophila/genética , Retroelementos , Telómero/genética , Animales , Cromosomas de Insectos/genética , Regulación del Desarrollo de la Expresión Génica , Inestabilidad Genómica , Humanos , Mutagénesis Insercional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos
14.
Sci Adv ; 9(50): eadj9359, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100593

RESUMEN

U6 and 7SK snRNAs have a 5' cap, believed to be essential for their stability and maintained by mammalian MePCE or Drosophila Bin3 enzymes. Although both proteins are required for 7SK stability, loss of neither destabilizes U6, casting doubts on the function of capping U6. Here, we show that the Drosophila Amus protein, homologous to both proteins, is essential for U6 but not 7SK stability. The loss of U6 is rescued by the expression of an Amus-MePCE hybrid protein harboring the methyltransferase domain from MePCE, highlighting the conserved function of the two proteins as the U6 capping enzyme. Our investigations in human cells establish a dependence of both U6 and 7SK stability on MePCE, resolving a long-standing uncertainty. While uncovering a division of labor of Bin3/MePCE/Amus proteins, we found a "Bin3-Box" domain present only in enzymes associated with 7SK regulation. Targeted mutagenesis confirms its importance for Bin3 function, revealing a possible conserved element in 7SK but not U6 biology.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Mamíferos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
15.
Proc Natl Acad Sci U S A ; 106(26): 10728-33, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19520832

RESUMEN

Using Drosophila as a model system, we identified here a stringent requirement for Mre11-Rad50-Nbs (MRN) function in telomere protection during early embryonic development. Animals homozygous for hypomorphic mutations in either mre11 or nbs develop normally with minimal telomere dysfunction. However, they produce inviable embryos that succumb to failure of mitosis caused by covalent fusion of telomeric DNA. Interestingly, the molecular defect is not the absence of MRN interaction or of Mre11 nuclease activities, but the depletion of the maternal pool of Nbs protein in these embryos. Because of Nbs depletion, Mre11 and Rad50 (MR) are excluded from chromatin. This maternal effect lethality in Drosophila is similar to that seen in mice carrying hypomorphic mrn mutations found in human patients, suggesting a common defect in telomere maintenance because of the loss of MRN integrity.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Telómero/genética , Animales , Proteínas Portadoras/metabolismo , Segregación Cromosómica/genética , Cruzamientos Genéticos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Femenino , Immunoblotting , Inmunohistoquímica , Masculino , Mitosis/genética , Mutación , Telómero/metabolismo , Factores de Tiempo
16.
G3 (Bethesda) ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35595239

RESUMEN

Epithelia exposed to elements of the environment are protected by a mucus barrier in mammals. This barrier also serves to lubricate during organ movements and to mediate substance exchanges between the environmental milieu and internal organs. A major component of the mucus barrier is a class of glycosylated proteins called Mucin. Mucin and mucin-related proteins are widely present in the animal kingdom. Mucin mis-regulation has been reported in many diseases such as cancers and ones involving the digestive and respiratory tracts. Although the biophysical properties of isolated Mucins have been extensively studied, in vivo models remain scarce for the study of their functions and regulations. Here, we characterize the Mucin-like JiangShi protein and its mutations in the fruit fly Drosophila. JiangShi is an extracellular glycoprotein with domain features reminiscent of mammalian nonmembranous Mucins, and one of the most widely distributed Mucin-like proteins studied in Drosophila. Both loss and over-production of JiangShi lead to terminal defects in adult structures and organismal death. Although the physiological function of JiangShi remains poorly defined, we present a genetically tractable model system for the in vivo studies of Mucin-like molecules.


Asunto(s)
Drosophila , Mucinas , Animales , Drosophila/genética , Drosophila/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Mamíferos , Mucinas/genética , Mucinas/metabolismo , Sistema Respiratorio/metabolismo
17.
Nat Struct Mol Biol ; 29(7): 665-676, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35835866

RESUMEN

How pioneer factors interface with chromatin to promote accessibility for transcription control is poorly understood in vivo. Here, we directly visualize chromatin association by the prototypical GAGA pioneer factor (GAF) in live Drosophila hemocytes. Single-particle tracking reveals that most GAF is chromatin bound, with a stable-binding fraction showing nucleosome-like confinement residing on chromatin for more than 2 min, far longer than the dynamic range of most transcription factors. These kinetic properties require the full complement of GAF's DNA-binding, multimerization and intrinsically disordered domains, and are autonomous from recruited chromatin remodelers NURF and PBAP, whose activities primarily benefit GAF's neighbors such as Heat Shock Factor. Evaluation of GAF kinetics together with its endogenous abundance indicates that, despite on-off dynamics, GAF constitutively and fully occupies major chromatin targets, thereby providing a temporal mechanism that sustains open chromatin for transcriptional responses to homeostatic, environmental and developmental signals.


Asunto(s)
Proteínas de Drosophila , Factores de Transcripción , Animales , Cromatina , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cinética , Factores de Transcripción/metabolismo
18.
Proc Natl Acad Sci U S A ; 105(37): 13999-4004, 2008 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-18772376

RESUMEN

Gene targeting provides a powerful tool for dissecting gene function. However, repeated targeting of a single locus remains a practice mostly limited to unicellular organisms that afford simple targeting methodologies. We developed an efficient method to repeatedly target a single locus in Drosophila. In this method, which we term "site-specific integrase mediated repeated targeting" (SIRT), an attP attachment site for the phage phiC31 integrase is first targeted to the vicinity of the gene of interest by homologous recombination. All subsequent modifications of that gene are introduced by phiC31-mediated integration of plasmids carrying an attB attachment site and the desired mutation. This highly efficient integration results in a tandem duplication of the target locus, which is then reduced into a single copy carrying the mutation, likely by the efficient "single strand annealing" mechanism, induced with a DNA double-strand break (DSB). We used SIRT to generate a series of six mutations in the Drosophila nbs gene, ranging from single amino acid replacements and small in-frame deletions to complete deletion of the gene. Because all of the components of SIRT are functional in many different organisms, it is readily adaptable to other multicellular organisms.


Asunto(s)
Drosophila melanogaster/genética , Mutagénesis/genética , Recombinación Genética/genética , Alelos , Animales , Femenino , Eliminación de Gen , Masculino
19.
G3 (Bethesda) ; 11(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34544118

RESUMEN

DNA topoisomerase I (Top1) maintains chromatin conformation during transcription. While Top1 is not essential in simple eukaryotic organisms such as yeast, it is required for the development of multicellular organisms. In fact, tissue and cell-type-specific functions of Top1 have been suggested in the fruit fly Drosophila. A better understanding of Top1's function in the context of development is important as Top1 inhibitors are among the most widely used anticancer drugs. As a step toward such a better understanding, we studied its localization in live cells of Drosophila. Consistent with prior results, Top1 is highly enriched at the nucleolus in transcriptionally active polyploid cells, and this enrichment responds to perturbation of transcription. In diploid cells, we uncovered evidence for Top1 foci formation at genomic regions not limited to the active rDNA locus, suggestive of novel regulation of Top1 recruitment. In the male germline, Top1 is highly enriched at the paired rDNA loci on sex chromosomes suggesting that it might participate in regulating their segregation during meiosis. Results from RNAi-mediated Top1 knockdown lend support to this hypothesis. Our study has provided one of the most comprehensive descriptions of Top1 localization during animal development.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Drosophila , Animales , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Ribosómico/genética , Drosophila/genética , Drosophila/metabolismo , Meiosis , Saccharomyces cerevisiae/genética , Inhibidores de Topoisomerasa I
20.
Fly (Austin) ; 14(1-4): 49-61, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31933406

RESUMEN

DNA synthesis during replication or repair is a fundamental cellular process that is catalyzed by a set of evolutionary conserved polymerases. Despite a large body of research, the DNA polymerases of Drosophila melanogaster have not yet been systematically reviewed, leading to inconsistencies in their nomenclature, shortcomings in their functional (Gene Ontology, GO) annotations and an under-appreciation of the extent of their characterization. Here, we describe the complete set of DNA polymerases in D. melanogaster, applying nomenclature already in widespread use in other species, and improving their functional annotation. A total of 19 genes encode the proteins comprising three replicative polymerases (alpha-primase, delta, epsilon), five translesion/repair polymerases (zeta, eta, iota, Rev1, theta) and the mitochondrial polymerase (gamma). We also provide an overview of the biochemical and genetic characterization of these factors in D. melanogaster. This work, together with the incorporation of the improved nomenclature and GO annotation into key biological databases, including FlyBase and UniProtKB, will greatly facilitate access to information about these important proteins.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Animales , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Drosophila/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA