Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 49(11): 3627-3638, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35556158

RESUMEN

PURPOSE: Targeting the prostate-specific membrane antigen (PSMA) using lutetium-177-labeled PSMA-specific tracers has become a very promising novel therapy option for prostate cancer (PCa). The efficacy of this therapy might be further improved by replacing the ß-emitting lutetium-177 with the α-emitting actinium-225. Actinium-225 is thought to have a higher therapeutic efficacy due to the high linear energy transfer (LET) of the emitted α-particles, which can increase the amount and complexity of the therapy induced DNA double strand breaks (DSBs). Here we evaluated the relative biological effectiveness of [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T by assessing in vitro binding characteristics, dosimetry, and therapeutic efficacy. METHODS AND RESULTS: The PSMA-expressing PCa cell line PC3-PIP was used for all in vitro assays. First, binding and displacement assays were performed, which revealed similar binding characteristics between [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T. Next, the assessment of the number of 53BP1 foci, a marker for the number of DNA double strand breaks (DSBs), showed that cells treated with [225Ac]Ac-PSMA-I&T had slower DSB repair kinetics compared to cells treated with [177Lu]Lu-PSMA-I&T. Additionally, clonogenic survival assays showed that specific targeting with [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T caused a dose-dependent decrease in survival. Lastly, after dosimetric assessment, the relative biological effectiveness (RBE) of [225Ac]Ac-PSMA-I&T was found to be 4.2 times higher compared to [177Lu]Lu-PSMA-I&T. CONCLUSION: We found that labeling of PSMA-I&T with lutetium-177 or actinium-225 resulted in similar in vitro binding characteristics, indicating that the distinct biological effects observed in this study are not caused by a difference in uptake of the two tracers. The slower repair kinetics of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T correlates to the assumption that irradiation with actinium-225 causes more complex, more difficult to repair DSBs compared to lutetium-177 irradiation. Furthermore, the higher RBE of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T underlines the therapeutic potential for the treatment of PCa.


Asunto(s)
Lutecio , Neoplasias de la Próstata Resistentes a la Castración , Actinio , Línea Celular Tumoral , ADN , Dipéptidos , Compuestos Heterocíclicos con 1 Anillo , Humanos , Lutecio/uso terapéutico , Masculino , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Radioisótopos
2.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887398

RESUMEN

Prostate specific membrane antigen targeted radionuclide therapy (PSMA-TRT) is a promising novel treatment for prostate cancer (PCa) patients. However, PSMA-TRT cannot be used for curative intent yet, thus additional research on how to improve the therapeutic efficacy is warranted. A potential way of achieving this, is combining TRT with poly ADP-ribosylation inhibitors (PARPi), which has shown promising results for TRT of neuroendocrine tumor cells. Currently, several clinical trials have been initiated for this combination for PCa, however so far, no evidence of synergism is available for PCa. Therefore, we evaluated the combination of PSMA-TRT with three classes of PARPi in preclinical PCa models. In vitro viability and survival assays were performed using PSMA-expressing PCa cell lines PC3-PIP and LNCaP to assess the effect of increasing concentrations of PARPi veliparib, olaparib or talazoparib in combination with PSMA-TRT compared to single PARPi treatment. Next, DNA damage analyses were performed by quantifying the number of DNA breaks by immunofluorescent stainings. Lastly, the potential of the combination treatments was studied in vivo in mice bearing PC3-PIP xenografts. Our results show that combining PSMA-TRT with PARPi did not synergistically affect the in vitro clonogenic survival or cell viability. DNA-damage analysis revealed only a significant increase in DNA breaks when combining PSMA-TRT with veliparib and not in the other combination treatments. Moreover, PSMA-TRT with PARPi treatment did not improve tumor control compared to PSMA-TRT monotherapy. Overall, the data presented do not support the assumption that combining PSMA-TRT with PARPi leads to a synergistic antitumor effect in PCa. These results underline that extensive preclinical research using various PCa models is imperative to validate the applicability of the combination strategy for PCa, as it is for other cancer types.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Próstata , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/radioterapia , Radioisótopos/uso terapéutico
3.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917044

RESUMEN

High-linear-energy-transfer (LET) radiation is more lethal than similar doses of low-LET radiation types, probably a result of the condensed energy deposition pattern of high-LET radiation. Here, we compare high-LET α-particle to low-LET X-ray irradiation and monitor double-strand break (DSB) processing. Live-cell microscopy was used to monitor DNA double-strand breaks (DSBs), marked by p53-binding protein 1 (53BP1). In addition, the accumulation of the endogenous 53BP1 and replication protein A (RPA) DSB processing proteins was analyzed by immunofluorescence. In contrast to α-particle-induced 53BP1 foci, X-ray-induced foci were resolved quickly and more dynamically as they showed an increase in 53BP1 protein accumulation and size. In addition, the number of individual 53BP1 and RPA foci was higher after X-ray irradiation, while focus intensity was higher after α-particle irradiation. Interestingly, 53BP1 foci induced by α-particles contained multiple RPA foci, suggesting multiple individual resection events, which was not observed after X-ray irradiation. We conclude that high-LET α-particles cause closely interspaced DSBs leading to high local concentrations of repair proteins. Our results point toward a change in DNA damage processing toward DNA end-resection and homologous recombination, possibly due to the depletion of soluble protein in the nucleoplasm. The combination of closely interspaced DSBs and perturbed DNA damage processing could be an explanation for the increased relative biological effectiveness (RBE) of high-LET α-particles compared to X-ray irradiation.


Asunto(s)
Partículas alfa , Roturas del ADN de Doble Cadena , Reparación del ADN/efectos de la radiación , Rayos X , Línea Celular Tumoral , Humanos
5.
Cancer Res ; 81(24): 6171-6182, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34548335

RESUMEN

The BRCA1 tumor suppressor gene encodes a multidomain protein for which several functions have been described. These include a key role in homologous recombination repair (HRR) of DNA double-strand breaks, which is shared with two other high-risk hereditary breast cancer suppressors, BRCA2 and PALB2. Although both BRCA1 and BRCA2 interact with PALB2, BRCA1 missense variants affecting its PALB2-interacting coiled-coil domain are considered variants of uncertain clinical significance (VUS). Using genetically engineered mice, we show here that a BRCA1 coiled-coil domain VUS, Brca1 p.L1363P, disrupts the interaction with PALB2 and leads to embryonic lethality. Brca1 p.L1363P led to a similar acceleration in the development of Trp53-deficient mammary tumors as Brca1 loss, but the tumors showed distinct histopathologic features, with more stable DNA copy number profiles in Brca1 p.L1363P tumors. Nevertheless, Brca1 p.L1363P mammary tumors were HRR incompetent and responsive to cisplatin and PARP inhibition. Overall, these results provide the first direct evidence that a BRCA1 missense variant outside of the RING and BRCT domains increases the risk of breast cancer. SIGNIFICANCE: These findings reveal the importance of a patient-derived BRCA1 coiled-coil domain sequence variant in embryonic development, mammary tumor suppression, and therapy response.See related commentary by Mishra et al., p. 6080.


Asunto(s)
Proteína BRCA1/fisiología , Proteína del Grupo de Complementación N de la Anemia de Fanconi/fisiología , Regulación Neoplásica de la Expresión Génica , Recombinación Homóloga , Neoplasias Mamarias Animales/patología , Reparación del ADN por Recombinación , Animales , Apoptosis , Proteína BRCA2/fisiología , Proliferación Celular , Femenino , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/metabolismo , Ratones , Ratones Noqueados , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/fisiología
6.
Nanotheranostics ; 4(1): 14-25, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31911891

RESUMEN

Polymersomes have the potential to be applied in targeted alpha radionuclide therapy, while in addition preventing release of recoiling daughter isotopes. In this study, we investigated the cellular uptake, post uptake processing and intracellular localization of polymersomes. Methods: High-content microscopy was used to validate polymersome uptake kinetics. Confocal (live cell) microscopy was used to elucidate the uptake mechanism and DNA damage induction. Intracellular distribution of polymersomes in 3-D was determined using super-resolution microscopy. Results: We found that altering polymersome size and concentration affects the initial uptake and overall uptake capacity; uptake efficiency and eventual plateau levels varied between cell lines; and mitotic cells show increased uptake. Intracellular polymersomes were transported along microtubules in a fast and dynamic manner. Endocytic uptake of polymersomes was evidenced through co-localization with endocytic pathway components. Finally, we show the intracellular distribution of polymersomes in 3-D and DNA damage inducing capabilities of 213Bi labeled polymersomes. Conclusion: Polymersome size and concentration affect the uptake efficiency, which also varies for different cell types. In addition, we present advanced assays to investigate uptake characteristics in detail, a necessity for optimization of nano-carriers. Moreover, by elucidating the uptake mechanism, as well as uptake extent and geometrical distribution of radiolabeled polymersomes we provide insight on how to improve polymersome design.


Asunto(s)
Portadores de Fármacos , Membranas Artificiales , Polímeros , Radioisótopos , Animales , Bismuto/química , Bismuto/farmacocinética , Línea Celular , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Endocitosis , Humanos , Ratones , Microscopía Confocal , Nanopartículas/química , Nanopartículas/metabolismo , Compuestos Orgánicos/química , Compuestos Orgánicos/farmacocinética , Polímeros/química , Polímeros/farmacocinética , Radioisótopos/química , Radioisótopos/farmacocinética , Radioterapia
7.
Methods Protoc ; 2(3)2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466405

RESUMEN

The use of alpha particles irradiation in clinical practice has gained interest in the past years, for example with the advance of radionuclide therapy. The lack of affordable and easily accessible irradiation systems to study the cell biological impact of alpha particles hampers broad investigation. Here we present a novel alpha particle irradiation set-up for uniform irradiation of cell cultures. By combining a small alpha emitting source and a computer-directed movement stage, we established a new alpha particle irradiation method allowing more advanced biological assays, including large-field local alpha particle irradiation and cell survival assays. In addition, this protocol uses cell culture on glass cover-slips which allows more advanced microscopy, such as super-resolution imaging, for in-depth analysis of the DNA damage caused by alpha particles. This novel irradiation set-up provides the possibility to perform reproducible, uniform and directed alpha particle irradiation to investigate the impact of alpha radiation on the cellular level.

8.
Pharmaceutics ; 11(5)2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31137479

RESUMEN

The use of nanoparticles as tumor-targeting agents is steadily increasing, and the influence of nanoparticle characteristics such as size and stealthiness have been established for a large number of nanocarrier systems. However, not much is known about the impact of tumor presence on nanocarrier circulation times. This paper reports on the influence of tumor presence on the in vivo circulation time and biodistribution of polybutadiene-polyethylene oxide (PBd-PEO) polymersomes. For this purpose, polymersomes were loaded with the gamma-emitter 111In and administered intravenously, followed by timed ex vivo biodistribution. A large reduction in circulation time was observed for tumor-bearing mice, with a circulation half-life of merely 5 min (R2 = 0.98) vs 117 min (R2 = 0.95) in healthy mice. To determine whether the rapid polymersome clearance observed in tumor-bearing mice was mediated by macrophages, chlodronate liposomes were administered to both healthy and tumor-bearing mice prior to the intravenous injection of radiolabeled polymersomes to deplete their macrophages. Pretreatment with chlodronate liposomes depleted macrophages in the spleen and liver and restored the circulation time of the polymersomes with no significant difference in circulation time between healthy mice and tumor-bearing mice pretreated with clodronate liposomes (15.2 ± 1.2% ID/g and 13.6 ± 2.7% ID/g, respectively, at 4 h p.i. with p = 0.3). This indicates that activation of macrophages due to tumor presence indeed affected polymersome clearance rate. Thus, next to particle design, the presence of a tumor can also greatly impact circulation times and should be taken into account when designing studies to evaluate the distribution of polymersomes.

9.
Cell Rep ; 23(7): 2107-2118, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768208

RESUMEN

Selective elimination of BRCA1-deficient cells by inhibitors of poly(ADP-ribose) polymerase (PARP) is a prime example of the concept of synthetic lethality in cancer therapy. This interaction is counteracted by the restoration of BRCA1-independent homologous recombination through loss of factors such as 53BP1, RIF1, and REV7/MAD2L2, which inhibit end resection of DNA double-strand breaks (DSBs). To identify additional factors involved in this process, we performed CRISPR/SpCas9-based loss-of-function screens and selected for factors that confer PARP inhibitor (PARPi) resistance in BRCA1-deficient cells. Loss of members of the CTC1-STN1-TEN1 (CST) complex were found to cause PARPi resistance in BRCA1-deficient cells in vitro and in vivo. We show that CTC1 depletion results in the restoration of end resection and that the CST complex may act downstream of 53BP1/RIF1. These data suggest that, in addition to its role in protecting telomeres, the CST complex also contributes to protecting DSBs from end resection.


Asunto(s)
Proteína BRCA1/deficiencia , Roturas del ADN de Doble Cadena , Complejos Multiproteicos/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales , Proteína BRCA1/metabolismo , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Roturas del ADN de Doble Cadena/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Telómero/metabolismo
10.
Dev Comp Immunol ; 47(2): 223-33, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25086293

RESUMEN

Scavenger receptors on the cell surface of macrophages play an important role in host defence through their ability to bind microbial ligands and induce phagocytosis. Concurrently, signal transduction pathways are initiated that aid in defence mechanisms against the invading microbe. Here we report on the function of scavenger receptor Marco (Macrophage receptor with collagenous structure) during infection of zebrafish embryos with Mycobacterium marinum, a close relative of M. tuberculosis. Morpholino knockdown demonstrates that Marco is required for the rapid phagocytosis of M. marinum following intravenous infection. Furthermore, gene expression analysis shows that Marco controls the initial transient pro-inflammatory response to M. marinum and remains a determining factor for the immune response signature at later stages of infection. Increased bacterial burden following marco knockdown indicates that this scavenger receptor is important for control of M. marinum growth, likely due to delayed phagocytosis and reduced pro-inflammatory signalling observed under conditions of Marco deficiency.


Asunto(s)
Macrófagos/inmunología , Infecciones por Mycobacterium no Tuberculosas/veterinaria , Fagocitosis/genética , Receptores Depuradores/inmunología , Pez Cebra/inmunología , Animales , Carga Bacteriana , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Inmunidad Innata , Macrófagos/microbiología , Morfolinos/genética , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum , Receptores Depuradores/antagonistas & inhibidores , Receptores Depuradores/genética , Transducción de Señal , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA