Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(41): e2204900119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191198

RESUMEN

Emotional information is better remembered than neutral information. Extensive evidence indicates that the amygdala and its interactions with other cerebral regions play an important role in the memory-enhancing effect of emotional arousal. While the cerebellum has been found to be involved in fear conditioning, its role in emotional enhancement of episodic memory is less clear. To address this issue, we used a whole-brain functional MRI approach in 1,418 healthy participants. First, we identified clusters significantly activated during enhanced memory encoding of negative and positive emotional pictures. In addition to the well-known emotional memory-related cerebral regions, we identified a cluster in the cerebellum. We then used dynamic causal modeling and identified several cerebellar connections with increased connection strength corresponding to enhanced emotional memory, including one to a cluster covering the amygdala and hippocampus, and bidirectional connections with a cluster covering the anterior cingulate cortex. The present findings indicate that the cerebellum is an integral part of a network involved in emotional enhancement of episodic memory.


Asunto(s)
Nivel de Alerta , Emociones , Amígdala del Cerebelo , Mapeo Encefálico , Cerebelo , Humanos , Imagen por Resonancia Magnética , Recuerdo Mental
2.
Proc Natl Acad Sci U S A ; 119(22): e2203680119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35622887

RESUMEN

Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.


Asunto(s)
Complejo Nuclear Basolateral , Emociones , Corteza Insular , Inhibición Neural , Reconocimiento en Psicología , Percepción Visual , Animales , Nivel de Alerta , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Emociones/efectos de los fármacos , Emociones/fisiología , Agonistas del GABA/farmacología , Corteza Insular/efectos de los fármacos , Corteza Insular/fisiología , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Norepinefrina/administración & dosificación , Norepinefrina/farmacología , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Percepción Visual/fisiología
3.
Neurobiol Learn Mem ; 197: 107700, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410654

RESUMEN

Previous findings have indicated that glucocorticoid hormones impair working memory via an interaction with the ß-adrenoceptor-cAMP signaling cascade to rapidly increase cAMP-dependent protein kinase (PKA) activity within the prefrontal cortex (PFC). However, it remains elusive how such activation of PKA can affect downstream cellular mechanisms in regulating PFC cognitive function. PKA is known to activate l-type voltage-gated Ca2+ channels (LTCCs) which regulate a broad range of cellular processes, including neuronal excitability and neurotransmitter release. The present experiments examined whether LTCC activity within the PFC is required in mediating glucocorticoid and PKA effects on spatial working memory. Male Sprague Dawley rats received bilateral administration of the LTCC inhibitor diltiazem together with either the glucocorticoid receptor agonist RU 28362 or PKA activator Sp-cAMPS into the PFC before testing on a delayed alternation task in a T-maze. Both RU 28362 and Sp-cAMPS impaired working memory, whereas the LTCC inhibitor diltiazem fully blocked the working memory impairment induced by either RU 28362 or Sp-cAMPS. Conversely, bilateral administration of the LTCC agonist Bay K8644 into the PFC was sufficient to impair working memory. Thus, these findings provide support for the view that glucocorticoids, via an interaction with the ß-adrenergic signaling cascade and enhanced PKA activity levels, impair working memory by increasing LTCC activity in the PFC.


Asunto(s)
Glucocorticoides , Memoria a Corto Plazo , Ratas , Animales , Masculino , Memoria a Corto Plazo/fisiología , Glucocorticoides/farmacología , Canales de Calcio Tipo L/metabolismo , Ratas Sprague-Dawley , Diltiazem/metabolismo , Diltiazem/farmacología , Trastornos de la Memoria , Corteza Prefrontal/fisiología
4.
Eur J Neurosci ; 55(9-10): 2122-2141, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34812558

RESUMEN

Abundant evidence shows that early-life stress (ELS) predisposes for the development of stress-related psychopathology when exposed to stressors later in life, but the underlying mechanisms remain unclear. To study predisposing effects of mild ELS on stress sensitivity, we examined in a healthy human population the impact of a history of ELS on acute stress-related changes in corticolimbic circuits involved in emotional processing (i.e., amygdala, hippocampus and ventromedial prefrontal cortex [vmPFC]). Healthy young male participants (n = 120) underwent resting-state functional magnetic resonance imaging (fMRI) in two separate sessions (stress induction vs. control). The Childhood Trauma Questionnaire (CTQ) was administered to index self-reported ELS, and stress induction was verified using salivary cortisol, blood pressure, heart rate and subjective affect. Our findings show that self-reported ELS was negatively associated with baseline cortisol, but not with the acute stress-induced cortisol response. Critically, individuals with more self-reported ELS exhibited an exaggerated reduction of functional connectivity in corticolimbic circuits under acute stress. A mediation analysis showed that the association between ELS and stress-induced changes in amygdala-hippocampal connectivity became stronger when controlling for basal cortisol. Our findings show, in a healthy sample, that the effects of mild ELS on functioning of corticolimbic circuits only become apparent when exposed to an acute stressor and may be buffered by adaptations in hypothalamic-pituitary-adrenal axis function. Overall, our findings might reveal a potential mechanism whereby even mild ELS might confer vulnerability to exposure to stressors later in adulthood.


Asunto(s)
Experiencias Adversas de la Infancia , Adulto , Humanos , Hidrocortisona , Sistema Hipotálamo-Hipofisario , Imagen por Resonancia Magnética , Masculino , Sistema Hipófiso-Suprarrenal , Estrés Psicológico
5.
Eur J Neurosci ; 55(9-10): 2666-2683, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33840130

RESUMEN

Glucocorticoids enhance memory consolidation of emotionally arousing events via largely unknown molecular mechanisms. This glucocorticoid effect on the consolidation process also requires central noradrenergic neurotransmission. The intracellular pathways of these two stress mediators converge on two transcription factors: the glucocorticoid receptor (GR) and phosphorylated cAMP response element-binding protein (pCREB). We therefore investigated, in male rats, whether glucocorticoid effects on memory are associated with genomic interactions between the GR and pCREB in the hippocampus. In a two-by-two design, object exploration training or no training was combined with post-training administration of a memory-enhancing dose of corticosterone or vehicle. Genomic effects were studied by chromatin immunoprecipitation followed by sequencing (ChIP-seq) of GR and pCREB 45 min after training and transcriptome analysis after 3 hr. Corticosterone administration induced differential GR DNA-binding and regulation of target genes within the hippocampus, largely independent of training. Training alone did not result in long-term memory nor did it affect GR or pCREB DNA-binding and gene expression. No strong evidence was found for an interaction between GR and pCREB. Combination of the GR DNA-binding and transcriptome data identified a set of novel, likely direct, GR target genes that are candidate mediators of corticosterone effects on memory consolidation. Cell-specific expression of the identified target genes using single-cell expression data suggests that the effects of corticosterone reflect in part non-neuronal cells. Together, our data identified new GR targets associated with memory consolidation that reflect effects in both neuronal and non-neuronal cells.


Asunto(s)
Glucocorticoides , Consolidación de la Memoria , Animales , Corticosterona/metabolismo , Corticosterona/farmacología , ADN/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Hipocampo/metabolismo , Masculino , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
6.
Nat Rev Neurosci ; 18(1): 7-19, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881856

RESUMEN

Glucocorticoid stress hormones are crucially involved in modulating mnemonic processing of emotionally arousing experiences. They enhance the consolidation of new memories, including those that extinguish older memories, but impair the retrieval of information stored in long-term memory. As strong aversive memories lie at the core of several fear-related disorders, including post-traumatic stress disorder and phobias, the memory-modulating properties of glucocorticoids have recently become of considerable translational interest. Clinical trials have provided the first evidence that glucocorticoid-based pharmacotherapies aimed at attenuating aversive memories might be helpful in the treatment of fear-related disorders. Here, we review important advances in the understanding of how glucocorticoids mediate stress effects on memory processes, and discuss the translational potential of these new conceptual insights.


Asunto(s)
Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Glucocorticoides/uso terapéutico , Memoria/efectos de los fármacos , Trastornos por Estrés Postraumático/tratamiento farmacológico , Estrés Psicológico , Animales , Ensayos Clínicos como Asunto , Humanos , Memoria/fisiología , Trastornos por Estrés Postraumático/psicología
7.
Proc Natl Acad Sci U S A ; 116(14): 7077-7082, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30877244

RESUMEN

Extensive evidence indicates that the basolateral amygdala (BLA) interacts with other brain regions in mediating stress hormone and emotional arousal effects on memory consolidation. Brain activation studies have shown that arousing conditions lead to the activation of large-scale neural networks and several functional connections between brain regions beyond the BLA. Whether such distal interactions on memory consolidation also depend on BLA activity is not as yet known. We investigated, in male Sprague-Dawley rats, whether BLA activity enables prelimbic cortex (PrL) interactions with the anterior insular cortex (aIC) and dorsal hippocampus (dHPC) in regulating glucocorticoid effects on different components of object recognition memory. The glucocorticoid receptor (GR) agonist RU 28362 administered into the PrL, but not infralimbic cortex, immediately after object recognition training enhanced 24-hour memory of both the identity and location of the object via functional interactions with the aIC and dHPC, respectively. Importantly, posttraining inactivation of the BLA by the noradrenergic antagonist propranolol abolished the effect of GR agonist administration into the PrL on memory enhancement of both the identity and location of the object. BLA inactivation by propranolol also blocked the effect of GR agonist administration into the PrL on inducing changes in neuronal activity within the aIC and dHPC during the postlearning consolidation period as well as on structural changes in spine morphology assessed 24 hours later. These findings provide evidence that BLA noradrenergic activity enables functional interactions between the PrL and the aIC and dHPC in regulating stress hormone and emotional arousal effects on memory.


Asunto(s)
Androstanoles/farmacología , Complejo Nuclear Basolateral/metabolismo , Corteza Cerebral/metabolismo , Glucocorticoides/metabolismo , Memoria/efectos de los fármacos , Red Nerviosa/metabolismo , Receptores de Glucocorticoides/agonistas , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/metabolismo
8.
Neurobiol Learn Mem ; 183: 107481, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34166790

RESUMEN

Glucocorticoid hormones are crucially involved in modulating mnemonic processing of stressful or emotionally arousing experiences. They are known to enhance the consolidation of new memories, including those that extinguish older memories. In this study, we investigated whether glucocorticoids facilitate the extinction of a striatum-dependent, and behaviorally more rigid, stimulus-response memory. For this, male rats were initially trained for six days on a stimulus-response task in a T-maze to obtain a reward after making an egocentric right-turn body response, regardless of the starting position in this maze. This training phase was followed by three extinction sessions in which right-turn body responses were not reinforced. Corticosterone administration into the dorsolateral region of the striatum after the first extinction session dose-dependently enhanced the consolidation of extinction memory: Rats administered the higher dose of corticosterone (30 ng), but not lower doses (5 or 10 ng), exhibited significantly fewer right-turn body responses and had longer latencies compared to vehicle-treated animals on the second and third extinction sessions. Co-administration of the glucocorticoid receptor antagonist RU 486 (10 ng) prevented the corticosterone effect, indicating that glucocorticoids enhance the extinction of stimulus-response memory via activation of the glucocorticoid receptor. Corticosterone administration into the dorsomedial striatum did not affect extinction memory. These findings indicate that stress-response mechanisms involving corticosterone actions in the dorsolateral striatum facilitate the extinction of stimulus-response memory that might allow for the development of an opportune behavioral strategy.


Asunto(s)
Corticosterona/farmacología , Extinción Psicológica/efectos de los fármacos , Glucocorticoides/farmacología , Memoria/efectos de los fármacos , Neostriado/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Antagonistas de Hormonas/farmacología , Masculino , Aprendizaje por Laberinto , Consolidación de la Memoria/efectos de los fármacos , Mifepristona/farmacología , Neostriado/metabolismo , Neostriado/patología , Ratas , Receptores de Glucocorticoides/antagonistas & inhibidores
9.
Stress ; 24(2): 181-188, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32233890

RESUMEN

Extensive evidence indicates that noradrenergic activation is essentially involved in mediating the enhancing effects of emotional arousal on memory consolidation. Our current understanding of the neurobiological mechanisms underlying the memory-modulatory effects of the noradrenergic system is primarily based on pharmacological studies in rats, employing targeted administration of noradrenergic drugs into specific brain regions. However, the further delineation of the specific neural circuitry involved would benefit from experimental tools that are currently more readily available in mice. Previous studies have not, as yet, investigated the effect of noradrenergic enhancement of memory in mice, which show different cognitive abilities and higher endogenous arousal levels induced by a training experience compared to rats. In the present study, we investigated the effect of posttraining noradrenergic activation in male C57BL/6J mice on the consolidation of object recognition and object location memory. We found that the noradrenergic stimulant yohimbine (0.3 or 1.0 mg/kg) administered systemically immediately after an object training experience dose-dependently enhanced 24-h memory of both the identity and location of the object. Thus, these findings indicate that noradrenergic activation also enhances memory consolidation processes in mice, paving the way for a systematic investigation of the neural circuitry underlying these emotional arousal effects on memory.LAY SUMMARY: The current study successfully validated the effect of noradrenergic activation on both object recognition and object location memory in mice. This study thereby provides a fundamental proof-of-principle for the investigation of the neural circuitry underlying noradrenergic and arousal effects on long-term memory in mice.


Asunto(s)
Memoria , Estrés Psicológico , Animales , Masculino , Memoria a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Norepinefrina , Ratas
10.
Mol Cell Neurosci ; 108: 103537, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32805389

RESUMEN

Stressful and emotionally arousing experiences activate hormonal and brain systems that create strong memories. Extensive evidence indicates that this strengthening effect involves the synergistic action of both norepinephrine and glucocorticoid hormones. This tight regulation of emotional memories is normally highly adaptive and pivotal for survival; yet, aberrant memory processing of stressful events is a major risk factor for the development of stress-related psychopathology. It remains unclear, however, to what extent these two stress hormone systems also affect the quality of such strengthened memories. In this Review, we discuss recent advances in the understanding of norepinephrine and glucocorticoid effects on the accuracy and generalization of contextual or episodic-like aspects of memory in rodents. We will argue that norepinephrine and glucocorticoids exert opposite effects on accuracy and generalization of memory through distinct effects on systems consolidation processes underlying the time-dependent reorganization of memory. Norepinephrine improves memory accuracy by boosting basolateral amygdala-hippocampal connectivity, hereby creating long-lasting hippocampus-dependent episodic-like memories. In contrast, glucocorticoids contribute to memory generalization by promoting integration of new memories into neocortical networks, decreasing hippocampal dependence. We discuss possible implications of these conceptual insights for understanding inter-individual differences in stress resilience and risk for psychopathology.


Asunto(s)
Encéfalo/metabolismo , Glucocorticoides/metabolismo , Memoria , Norepinefrina/metabolismo , Estrés Psicológico/metabolismo , Animales , Encéfalo/fisiología , Generalización Psicológica , Humanos , Estrés Psicológico/fisiopatología
11.
Proc Natl Acad Sci U S A ; 114(34): 9176-9181, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28790188

RESUMEN

Emotional enhancement of memory by noradrenergic mechanisms is well-described, but the long-term consequences of such enhancement are poorly understood. Over time, memory traces are thought to undergo a neural reorganization, that is, a systems consolidation, during which they are, at least partly, transferred from the hippocampus to neocortical networks. This transfer is accompanied by a decrease in episodic detailedness. Here we investigated whether norepinephrine (NE) administration into the basolateral amygdala after training on an inhibitory avoidance discrimination task, comprising two distinct training contexts, alters systems consolidation dynamics to maintain episodic-like accuracy and hippocampus dependency of remote memory. At a 2-d retention test, both saline- and NE-treated rats accurately discriminated the training context in which they had received footshock. Hippocampal inactivation with muscimol before retention testing disrupted discrimination of the shock context in both treatment groups. At 28 d, saline-treated rats showed hippocampus-independent retrieval and lack of discrimination. In contrast, NE-treated rats continued to display accurate memory of the shock-context association. Hippocampal inactivation at this remote retention test blocked episodic-like accuracy and induced a general memory impairment. These findings suggest that the NE treatment altered systems consolidation dynamics by maintaining hippocampal involvement in the memory. This shift in systems consolidation was paralleled by time-regulated DNA methylation and transcriptional changes of memory-related genes, namely Reln and Pkmζ, in the hippocampus and neocortex. The findings provide evidence suggesting that consolidation of emotional memories by noradrenergic mechanisms alters systems consolidation dynamics and, as a consequence, influences the maintenance of long-term episodic-like accuracy of memory.


Asunto(s)
Complejo Nuclear Basolateral/efectos de los fármacos , Hipocampo/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Norepinefrina/farmacología , Agonistas alfa-Adrenérgicos/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Metilación de ADN/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Proteínas de la Matriz Extracelular/genética , Agonistas de Receptores de GABA-A/farmacología , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Memoria a Largo Plazo/fisiología , Muscimol/farmacología , Proteínas del Tejido Nervioso/genética , Norepinefrina/administración & dosificación , Ratas Sprague-Dawley , Proteína Reelina , Serina Endopeptidasas/genética , Transcriptoma/efectos de los fármacos
12.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934833

RESUMEN

Mineralocorticoid receptor (MR)-mediated signaling in the brain has been suggested as a protective factor in the development of psychopathology, in particular mood disorders. We recently identified genomic loci at which either MR or the closely related glucocorticoid receptor (GR) binds selectively, and found members of the NeuroD transcription factor family to be specifically associated with MR-bound DNA in the rat hippocampus. We show here using forebrain-specific MR knockout mice that GR binding to MR/GR joint target loci is not affected in any major way in the absence of MR. Neurod2 binding was also independent of MR binding. Moreover, functional comparison with MyoD family members indicates that it is the chromatin remodeling aspect of NeuroD, rather than its direct stimulation of transcription, that is responsible for potentiation of MR-mediated transcription. These findings suggest that NeuroD acts in a permissive way to enhance MR-mediated transcription, and they argue against competition for DNA binding as a mechanism of MR- over GR-specific binding.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Corticosterona/metabolismo , ADN/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Ratones Noqueados , Modelos Biológicos , Proteína MioD/metabolismo , Proteínas del Tejido Nervioso/química , Unión Proteica , Dominios Proteicos , Receptores de Glucocorticoides/metabolismo , Relación Estructura-Actividad
13.
Neurobiol Learn Mem ; 141: 124-133, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28366865

RESUMEN

Glucocorticoid stress hormones are known to enhance the consolidation of hippocampus-dependent spatial and contextual memory. Recent findings indicate that glucocorticoids also enhance the consolidation of procedural memory that relies on the dorsal striatum. The dorsal striatum can be functionally subdivided into the dorsolateral striatum (DLS), which is primarily implicated in shaping procedural memories, and the dorsomedial striatum (DMS), which is engaged in spatial memory. Here, we investigated the hypothesis that posttraining glucocorticoid administration into the DLS promotes the formation of a procedural memory that will normally take place only with extensive training. Male Wistar rats were trained to find a reward in a cross maze that can be solved through either place or response learning. Rats received four trials per day for 5days, a probe trial on Day 6, further training on Days 7-13, and an additional probe trial on Day 14. On Days 2-4 of training, they received posttraining infusions of corticosterone (10 or 30ng) or vehicle into either the DLS or DMS. Rats treated with vehicle into either the DLS or DMS displayed place learning on Day 6 and response learning on Day 14, indicating a shift in control of learned behavior toward a habit-like procedural strategy with extended training. Rats administered corticosterone (10ng) into the DLS displayed response learning on both Days 6 and 14, indicating an accelerated shift to response learning. In contrast, corticosterone administered posttraining into the DMS did not significantly alter the shift from place to response learning. These findings indicate that glucocorticoid administration into the DLS enhances memory consolidation of procedural learning and thereby influences the timing of the switch from the use of spatial/contextual memory to habit-like procedural memory to guide behavior.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Corticosterona/farmacología , Glucocorticoides/farmacología , Aprendizaje Espacial/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Masculino , Consolidación de la Memoria/efectos de los fármacos , Ratas , Ratas Wistar
14.
Proc Natl Acad Sci U S A ; 111(51): 18333-8, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489086

RESUMEN

Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The experiments first examined whether the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) are released by aversive training. Inhibitory avoidance training with higher footshock intensity produced increased levels of AEA in the amygdala, hippocampus, and medial prefrontal cortex (mPFC) shortly after training in comparison with levels assessed in rats trained with lower footshock intensity or unshocked controls exposed only to the training apparatus. In contrast, 2-AG levels were not significantly elevated. The additional finding that posttraining infusions of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which selectively increases AEA levels at active synapses, administered into the basolateral complex of the amygdala (BLA), hippocampus, or mPFC enhanced memory strongly suggests that the endogenously released AEA modulates memory consolidation. Moreover, in support of the view that this emotional training-associated increase in endocannabinoid neurotransmission, and its effects on memory enhancement, depends on the integrity of functional interactions between these different brain regions, we found that disruption of BLA activity blocked the training-induced increases in AEA levels as well as the memory enhancement produced by URB597 administered into the hippocampus or mPFC. Thus, the findings provide evidence that emotionally arousing training increases AEA levels within prefrontal-limbic circuits and strongly suggest that this cannabinoid activation regulates emotional arousal effects on memory consolidation.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Emociones , Endocannabinoides/metabolismo , Sistema Límbico/fisiología , Memoria , Alcamidas Poliinsaturadas/metabolismo , Corteza Prefrontal/fisiología , Amidohidrolasas/antagonistas & inhibidores , Animales , Reacción de Prevención , Benzamidas/farmacología , Carbamatos/farmacología , Glicéridos/metabolismo , Sistema Límbico/enzimología , Corteza Prefrontal/enzimología , Ratas , Receptor Cannabinoide CB1/agonistas
15.
J Neurosci ; 35(41): 13962-74, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26468197

RESUMEN

Variations in environmental aversiveness influence emotional memory processes in rats. We have previously shown that cannabinoid effects on memory are dependent on the stress level at the time of training as well as on the aversiveness of the environmental context. Here, we investigated whether the hippocampal endocannabinoid system modulates memory retrieval depending on the training-associated arousal level. Male adult Sprague Dawley rats were trained on a water maze spatial task at two different water temperatures (19°C and 25°C) to elicit either higher or lower stress levels, respectively. Rats trained under the higher stress condition had better memory and higher corticosterone concentrations than rats trained at the lower stress condition. The cannabinoid receptor agonist WIN55212-2 (10-30 ng/side), the 2-arachidonoyl glycerol (2-AG) hydrolysis inhibitor JZL184 (0.1-1 µg/side), and the anandamide (AEA) hydrolysis inhibitor URB597 (10-30 ng/side) were administered bilaterally into the hippocampus 60 min before probe-trial retention testing. WIN55212-2 or JZL184, but not URB597, impaired probe-trial performances only of rats trained at the higher stressful condition. Furthermore, rats trained under higher stress levels displayed an increase in hippocampal 2-AG, but not AEA, levels at the time of retention testing and a decreased affinity of the main 2-AG-degrading enzyme for its substrate. The present findings indicate that the endocannabinoid 2-AG in the hippocampus plays a key role in the selective regulation of spatial memory retrieval of stressful experience, shedding light on the neurobiological mechanisms involved in the impact of stress effects on memory processing. SIGNIFICANCE STATEMENT: Endogenous cannabinoids play a central role in the modulation of memory for emotional events. Here we demonstrate that the endocannabinoid 2-arachidonoylglycerol in the hippocampus, a brain region crucially involved in the regulation of memory processes, selectively modulates spatial memory recall of stressful experiences. Thus, our findings provide evidence that the endocannabinoid 2-arachidonoylglycerol is a key player in mediating the impact of stress on memory retrieval. These findings can pave the way to new potential therapeutic intervention for the treatment of neuropsychiatric disorders, such as post-traumatic stress disorder, where a previous exposure to traumatic events could alter the response to traumatic memory recall leading to mental illness.


Asunto(s)
Nivel de Alerta/fisiología , Emociones/fisiología , Endocannabinoides/metabolismo , Recuerdo Mental/fisiología , Aprendizaje Espacial/fisiología , Animales , Ácidos Araquidónicos/farmacología , Nivel de Alerta/efectos de los fármacos , Benzamidas/farmacología , Benzoxazinas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Carbamatos/farmacología , Corticosterona/sangre , Relación Dosis-Respuesta a Droga , Emociones/efectos de los fármacos , Endocannabinoides/farmacología , Inhibidores Enzimáticos/farmacología , Glicéridos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Recuerdo Mental/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , Ratas , Ratas Sprague-Dawley , Aprendizaje Espacial/efectos de los fármacos , Estrés Psicológico/sangre , Estrés Psicológico/metabolismo , Temperatura
16.
Proc Natl Acad Sci U S A ; 110(19): 7910-5, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23613579

RESUMEN

Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus-pituitary-adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inhibidores , Animales , Encéfalo/embriología , Encéfalo/fisiología , Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Dexametasona/farmacología , Hipocampo/metabolismo , Ligandos , Masculino , Mifepristona/farmacología , Coactivador 1 de Receptor Nuclear/metabolismo , Péptidos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Esteroides/metabolismo , Factores de Tiempo , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
17.
Behav Brain Sci ; 39: e222, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28347385

RESUMEN

Mather and colleagues postulate that norepinephrine promotes selective processing of emotionally salient information through local "hotspots" where norepinephrine release interacts with glutamatergic activity. However, findings in rodents and humans indicate that norepinephrine is ineffective in modulating mnemonic processes in the absence of a functional amygdala. We therefore argue that emphasis should shift toward modulatory effects of amygdala-driven changes at the network level.


Asunto(s)
Amígdala del Cerebelo/fisiología , Nivel de Alerta , Emociones , Memoria , Humanos , Norepinefrina/fisiología
18.
J Neurosci ; 34(42): 13935-47, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319690

RESUMEN

Positive and negative emotional events are better remembered than neutral events. Studies in animals suggest that this phenomenon depends on the influence of the amygdala upon the hippocampus. In humans, however, it is largely unknown how these two brain structures functionally interact and whether these interactions are similar between positive and negative information. Using dynamic causal modeling of fMRI data in 586 healthy subjects, we show that the strength of the connection from the amygdala to the hippocampus was rapidly and robustly increased during the encoding of both positive and negative pictures in relation to neutral pictures. We also observed an increase in connection strength from the hippocampus to the amygdala, albeit at a smaller scale. These findings indicate that, during encoding, emotionally arousing information leads to a robust increase in effective connectivity from the amygdala to the hippocampus, regardless of its valence.


Asunto(s)
Amígdala del Cerebelo/fisiología , Nivel de Alerta/fisiología , Emociones/fisiología , Hipocampo/fisiología , Estimulación Luminosa/métodos , Adulto , Femenino , Humanos , Masculino , Vías Nerviosas/fisiología , Adulto Joven
19.
J Neurosci ; 34(31): 10274-84, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25080589

RESUMEN

Recent evidence suggests that altered expression and epigenetic modification of the glucocorticoid receptor gene (NR3C1) are related to the risk of post-traumatic stress disorder (PTSD). The underlying mechanisms, however, remain unknown. Because glucocorticoid receptor signaling is known to regulate emotional memory processes, particularly in men, epigenetic modifications of NR3C1 might affect the strength of traumatic memories. Here, we found that increased DNA methylation at the NGFI-A (nerve growth factor-induced protein A) binding site of the NR3C1 promoter was associated with less intrusive memory of the traumatic event and reduced PTSD risk in male, but not female survivors of the Rwandan genocide. NR3C1 methylation was not significantly related to hyperarousal or avoidance symptoms. We further investigated the relationship between NR3C1 methylation and memory functions in a neuroimaging study in healthy subjects. Increased NR3C1 methylation-which was associated with lower NR3C1 expression-was related to reduced picture recognition in male, but not female subjects. Furthermore, we found methylation-dependent differences in recognition memory-related brain activity in men. Together, these findings indicate that an epigenetic modification of the glucocorticoid receptor gene promoter is linked to interindividual and gender-specific differences in memory functions and PTSD risk.


Asunto(s)
Epigénesis Genética/genética , Genocidio/psicología , Memoria , Receptores de Glucocorticoides/genética , Trastornos por Estrés Postraumático , Sobrevivientes/psicología , Adolescente , Adulto , Encéfalo/irrigación sanguínea , Encéfalo/patología , Metilación de ADN , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Pruebas Neuropsicológicas , Oxígeno/sangre , Regiones Promotoras Genéticas/genética , Escalas de Valoración Psiquiátrica , Riesgo , Rwanda , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/patología , Trastornos por Estrés Postraumático/psicología , Suiza , Adulto Joven
20.
Proc Natl Acad Sci U S A ; 109(9): 3504-9, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331883

RESUMEN

There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3-3 mg/kg) to male Sprague-Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal ß-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212-2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences.


Asunto(s)
Ácidos Araquidónicos/fisiología , Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Miedo/fisiología , Glucocorticoides/fisiología , Glicéridos/fisiología , Hipocampo/fisiología , Memoria/fisiología , Receptor Cannabinoide CB1/fisiología , Estimulación Acústica , Antagonistas Adrenérgicos beta/farmacología , Animales , Nivel de Alerta/fisiología , Benzoxazinas/farmacología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Corticosterona/administración & dosificación , Corticosterona/farmacología , Electrochoque , Emociones/fisiología , Miedo/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Hipocampo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , Piperidinas/farmacología , Propranolol/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptores de Glucocorticoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA