Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(17): 11792-11800, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626444

RESUMEN

The large steric profile of the N-heterocyclic boryloxy ligand, -OB(NDippCH)2, and its ability to stabilize the metal-centered HOMO, are exploited in the synthesis of the first example of a "naked" acyclic aluminyl complex, [K(2.2.2-crypt)][Al{OB(NDippCH)2}2]. This system, which is formed by substitution at AlI (rather than reduction of AlIII), represents the first O-ligated aluminyl compound and is shown to be capable of hitherto unprecedented reversible single-site [4 + 1] cycloaddition of benzene. This chemistry and the unusual regioselectivity of the related cycloaddition of anthracene are shown to be highly dependent on the availability (or otherwise) of the K+ countercation.

2.
Angew Chem Int Ed Engl ; 63(22): e202405053, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536728

RESUMEN

The homoleptic magnesium bis(aluminyl) compound Mg[Al(NON)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) can be accessed from K2[Al(NON)]2 and MgI2 and shown to possess a non-linear geometry (∠Al-Mg-Al=164.8(1)°) primarily due to the influence of dispersion interactions. This compound acts a four-electron reservoir in the reductive de-fluorination of SF6, and reacts thermally with polar substrates such as MeI via nucleophilic attack through aluminium, consistent with the QT-AIM charges calculated for the metal centres, and a formal description as a Al(I)-Mg(II)-Al(I) trimetallic. On the other hand, under photolytic activation, the reaction with 1,5-cyclooctadiene leads to the stereo-selective generation of transannular cycloaddition products consistent with radical based chemistry, emphasizing the covalent nature of the Mg-Al bonds and a description as a Al(II)-Mg(0)-Al(II) synthon. Consistently, photolysis of Mg[Al(NON)]2 in hexane in the absence of COD generates [Al(NON)]2 together with magnesium metal.

3.
Angew Chem Int Ed Engl ; : e202407427, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775385

RESUMEN

By exploiting the electronic capabilities of the N-heterocyclic boryloxy (NHBO) ligand, we have synthesized "naked" acyclic gallyl [Ga{OB(NDippCH)2}2]- and indyl [In{OB(NDippCH)2}2]- anions (as their [K(2.2.2-crypt)]+ salts) through K+ abstraction from [KGa{OB(NDippCH)2}2] and [KIn{OB(NDippCH)2}2] using 2.2.2-crypt. These systems represent the first O-ligated gallyl/indyl systems, are ultimately accessed from cyclopentadienyl GaI/InI precursors by substitution chemistry, and display nucleophilic reactivity which is strongly influenced by the presence (or otherwise) of the K+ counterion.

4.
Angew Chem Int Ed Engl ; 61(48): e202211616, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36161749

RESUMEN

A systematic study to access stable stannaimines is reported, by combining different heteroleptic stannylenes with a range of organic azides. The reactions of terphenyl-/hypersilyl-substituted stannylenes yield the putative tin nitrogen double bond, but is directly followed by 1,2-silyl migration to give SnII systems featuring bulky silylamido ligands. By contrast, the transition from a two σ donor ligand set to a mixed σ-donor/π-donor scaffold allows access to three new stannaimines which can be handled at room temperature. The reactivity profile of these Sn=N bonded species is crucially dependent on the substituent at the nitrogen atom. As such, the Sn=NMes (Mes=2,4,6-Me3 C6 H2 ) system is capable of activating a broad range of substrates under ambient conditions via 1,2-addition reactions, [2+2] and [4+2] cycloaddition reactions. Most interestingly, very rare examples of main group multiple bond metathesis reactions are also found to be viable.

5.
Nat Chem ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760434

RESUMEN

Owing to its high toxicity, the chemistry of element number four, beryllium, is poorly understood. However, as the lightest elements provide the basis for fundamental models of chemical bonding, there is a need for greater insight into the properties of beryllium. In this context, the chemistry of the homo-elemental Be-Be bond is of fundamental interest. Here the ligand metathesis chemistry of diberyllocene (1; CpBeBeCp)-a stable complex with a Be-Be bond-has been investigated. These studies yield two complexes with Be-Be bonds: Cp*BeBeCp (2) and [K{(HCDippN)2BO}2]BeBeCp (3; Dipp = 2,6-diisopropylphenyl). Quantum chemical calculations indicate that the Be-Be bond in 3 is polarized to such an extent that the complex could be formulated as a mixed-oxidation state Be0/BeII complex. Correspondingly, it is demonstrated that 3 can transfer the 'beryllyl' anion, [BeCp]-, to an organic substrate, by analogy with the reactivity of sp2-sp3 diboranes. Indeed, this work reveals striking similarities between the homo-elemental bonding linkages of beryllium and boron, despite the respective metallic and non-metallic natures of these elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA