Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Breast Cancer Res ; 22(1): 121, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148288

RESUMEN

Metaplastic breast cancer (MpBC) is an exceedingly rare breast cancer variant that is therapeutically challenging and aggressive. MpBC is defined by the histological presence of at least two cellular types, typically epithelial and mesenchymal components. This variant harbors a triple-negative breast cancer (TNBC) phenotype, yet has a worse prognosis and decreased survival compared to TNBC. There are currently no standardized treatment guidelines specifically for MpBC. However, prior studies have found that MpBC typically has molecular alterations in epithelial-to-mesenchymal transition, amplification of epidermal growth factor receptor, PI3K/Akt signaling, nitric oxide signaling, Wnt/ß-catenin signaling, altered immune response, and cell cycle dysregulation. Some of these molecular alterations have been studied as therapeutic targets, in both the preclinical and clinical setting. This current review discusses the histological organization and cellular origins of MpBC, molecular alterations, the role of radiation therapy, and current clinical trials for MpBC.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Genes Relacionados con las Neoplasias/genética , Metaplasia/patología , Neoplasias de la Mama Triple Negativas/patología , Vía de Señalización Wnt , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Femenino , Humanos , Metaplasia/genética , Metaplasia/metabolismo , Metaplasia/terapia , Terapia Molecular Dirigida/métodos , Óxido Nítrico Sintasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/terapia
2.
Breast Cancer Res ; 22(1): 48, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32414394

RESUMEN

BACKGROUND: The human epidermal growth factor receptor (HER) family, notably EGFR, is overexpressed in most triple-negative breast cancer (TNBC) cases and provides cancer cells with compensatory signals that greatly contribute to the survival and development of resistance in response to therapy. This study investigated the effects of Pan-HER (Symphogen, Ballerup, Denmark), a novel mixture of six monoclonal antibodies directed against members of the HER family EGFR, HER2, and HER3, in a preclinical trial of TNBC patient-derived xenografts (PDXs). METHODS: Fifteen low passage TNBC PDX tumor samples were transferred into the right mammary fat pad of mice for engraftment. When tumors reached an average size of 100-200 mm3, mice were randomized (n ≥ 6 per group) and treated following three 1-week cycles consisting of three times/week intraperitoneal (IP) injection of either formulation buffer (vehicle control) or Pan-HER (50 mg/kg). At the end of treatment, tumors were collected for Western blot, RNA, and immunohistochemistry analyses. RESULTS: All 15 TNBC PDXs were responsive to Pan-HER treatment, showing significant reductions in tumor growth consistent with Pan-HER-mediated tumor downmodulation of EGFR and HER3 protein levels and significantly decreased activation of associated HER family signaling pathways AKT and ERK. Tumor regression was observed in five of the models, which corresponded to those PDX tumor models with the highest level of HER family activation. CONCLUSIONS: The marked effect of Pan-HER in numerous HER family-dependent TNBC PDX models justifies further studies of Pan-HER in TNBC clinical trials as a potential therapeutic option.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-3/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Ratones , Terapia Molecular Dirigida , Mutación , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas
4.
Breast Cancer Res ; 22(1): 4, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924241

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) are purported to be responsible for tumor initiation, treatment resistance, disease recurrence, and metastasis. CXCR1, one of the receptors for CXCL8, was identified on breast cancer (BC) CSCs. Reparixin, an investigational allosteric inhibitor of CXCR1, reduced the CSC content of human BC xenograft in mice. METHODS: In this multicenter, single-arm trial, women with HER-2-negative operable BC received reparixin oral tablets 1000 mg three times daily for 21 days before surgery. Primary objectives evaluated the safety of reparixin and the effects of reparixin on CSC and tumor microenvironment in core biopsies taken at baseline and at treatment completion. Signal of activity was defined as a reduction of ≥ 20% in ALDH+ or CD24-/CD44+ CSC by flow cytometry, with consistent reduction by immunohistochemistry. RESULTS: Twenty patients were enrolled and completed the study. There were no serious adverse reactions. CSC markers ALDH+ and CD24-/CD44+ measured by flow cytometry decreased by ≥ 20% in 4/17 and 9/17 evaluable patients, respectively. However, these results could not be confirmed by immunofluorescence due to the very low number of CSC. CONCLUSIONS: Reparixin appeared safe and well-tolerated. CSCs were reduced in several patients as measured by flow cytometry, suggesting targeting of CXCR1 on CSC. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov, NCT01861054. Registered on April 18, 2013.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Células Madre Neoplásicas/patología , Receptor ErbB-2/metabolismo , Receptores de Interleucina-8A/antagonistas & inhibidores , Receptores de Interleucina-8B/antagonistas & inhibidores , Sulfonamidas/uso terapéutico , Adulto , Anciano , Animales , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Femenino , Humanos , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/efectos de los fármacos , Seguridad del Paciente , Sulfonamidas/farmacocinética , Distribución Tisular
5.
Breast Cancer Res ; 21(1): 100, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477168

RESUMEN

BACKGROUND: Neoadjuvant dual human epidermal growth factor receptor (HER2) blockade with trastuzumab and pertuzumab plus paclitaxel leads to an overall pathologic complete response (pCR) rate of 46%. Dual HER2 blockade with ado-trastuzumab emtansine (T-DM1) and lapatinib plus nab-paclitaxel has shown efficacy in patients with metastatic HER2-positive breast cancer. To test neoadjuvant effectiveness of this regimen, an open-label, multicenter, randomized, phase II trial was conducted comparing T-DM1, lapatinib, and nab-paclitaxel with trastuzumab, pertuzumab, and paclitaxel in patients with early-stage HER2-positive breast cancer. METHODS: Stratification by estrogen receptor (ER) status occurred prior to randomization. Patients in the experimental arm received 6 weeks of targeted therapies (T-DM1 and lapatinib) followed by T-DM1 every 3 weeks, lapatinib daily, and nab-paclitaxel weekly for 12 weeks. In the standard arm, patients received 6 weeks of trastuzumab and pertuzumab followed by trastuzumab weekly, pertuzumab every 3 weeks, and paclitaxel weekly for 12 weeks. The primary objective was to evaluate the proportion of patients with residual cancer burden (RCB) 0 or I. Key secondary objectives included pCR rate, safety, and change in tumor size at 6 weeks. Hypothesis-generating correlative assessments were also performed. RESULTS: The 30 evaluable patients were well-balanced in patient and tumor characteristics. The proportion of patients with RCB 0 or I was higher in the experimental arm (100% vs. 62.5% in the standard arm, p = 0.0035). In the ER-positive subset, all patients in the experimental arm achieved RCB 0-I versus 25% in the standard arm (p = 0.0035). Adverse events were similar between the two arms. CONCLUSION: In early-stage HER2-positive breast cancer, the neoadjuvant treatment with T-DM1, lapatinib, and nab-paclitaxel was more effective than the standard treatment, particularly in the ER-positive cohort. TRIAL REGISTRATION: Clinicaltrials.gov NCT02073487 , February 27, 2014.


Asunto(s)
Ado-Trastuzumab Emtansina/uso terapéutico , Albúminas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Lapatinib/uso terapéutico , Paclitaxel/uso terapéutico , Receptor ErbB-2/antagonistas & inhibidores , Ado-Trastuzumab Emtansina/administración & dosificación , Ado-Trastuzumab Emtansina/efectos adversos , Adulto , Anciano , Albúminas/administración & dosificación , Albúminas/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Lapatinib/administración & dosificación , Lapatinib/efectos adversos , Persona de Mediana Edad , Terapia Neoadyuvante , Paclitaxel/administración & dosificación , Paclitaxel/efectos adversos , Receptor ErbB-2/metabolismo , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos
6.
Breast Cancer Res ; 20(1): 108, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185216

RESUMEN

BACKGROUND: Breast cancer has been considered not highly immunogenic, and few patients benefit from current immunotherapies. However, new strategies are aimed at changing this paradigm. In the present study, we examined the in vivo activity of a humanized anti-programmed cell death protein 1 (anti-PD-1) antibody against triple-negative breast cancer (TNBC) patient-derived xenograft (PDX) tumor models. METHODS: To circumvent some of the limitations posed by the lack of appropriate animal models in preclinical studies of immunotherapies, partially human leukocyte antigen-matched TNBC PDX tumor lines from our collection, as well as human melanoma cell lines, were engrafted in humanized nonobese diabetic/severe combined immunodeficiency IL2Rγnull (hNSG) mice obtained by intravenous injection of CD34+ hematopoietic stem cells into nonlethally irradiated 3-4-week-old mice. After both PDXs and melanoma cell xenografts reached ~ 150-200 mm3, animals were treated with humanized anti-PD-1 antibody or anti-CTLA-4 and evaluated for tumor growth, survival, and potential mechanism of action. RESULTS: Human CD45+, CD20+, CD3+, CD8+, CD56+, CD68+, and CD33+ cells were readily identified in blood, spleen, and bone marrow collected from hNSG, as well as human cytokines in blood and engrafted tumors. Engraftment of TNBC PDXs in hNSG was high (~ 85%), although they grew at a slightly slower pace and conserved their ability to generate lung metastasis. Human CD45+ cells were detectable in hNSG-harbored PDXs, and consistent with clinical observations, anti-PD-1 antibody therapy resulted in both a significant reduction in tumor growth and increased survival in some of the hNSG PDX tumor lines, whereas no such effects were observed in the corresponding non-hNSG models. CONCLUSIONS: This study provides evidence associated with anti-PD-1 immunotherapy against TNBC tumors supporting the use of TNBC PDXs in humanized mice as a model to overcome some of the technical difficulties associated with the preclinical investigation of immune-based therapies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Citocinas/sangre , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia/métodos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Receptor de Muerte Celular Programada 1/inmunología , Neoplasias de la Mama Triple Negativas/sangre , Neoplasias de la Mama Triple Negativas/inmunología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
7.
Artículo en Inglés | MEDLINE | ID: mdl-27795377

RESUMEN

Antimicrobial resistance is recognized as one of the principal threats to public health worldwide, yet the problem is increasing. Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most difficult to treat in clinical settings due to the resistance of MRSA to nearly all available antibiotics. The cyclic anionic lipopeptide antibiotic daptomycin (DAP) is the clinical mainstay of anti-MRSA therapy. The decreased susceptibility to DAP (DAP resistance [DAPr]) reported in MRSA is frequently accompanied by a paradoxical decrease in ß-lactam resistance, a process known as the "seesaw effect." Despite the observed discordance in resistance phenotypes, the combination of DAP and ß-lactams has been proven to be clinically effective for the prevention and treatment of infections due to DAPr MRSA strains. However, the mechanisms underlying the interactions between DAP and ß-lactams are largely unknown. In the study described here, we studied the role of mprF with DAP-induced mutations in ß-lactam sensitization and its involvement in the effective killing by the DAP-oxacillin (OXA) combination. DAP-OXA-mediated effects resulted in cell wall perturbations, including changes in peptidoglycan insertion, penicillin-binding protein 2 (PBP 2) delocalization, and reduced membrane amounts of PBP 2a, despite the increased transcription of mecA through mec regulatory elements. We have found that the VraSR sensor-regulator is a key component of DAP resistance, triggering mutated mprF-mediated cell membrane (CM) modifications that result in impairment of PrsA location and chaperone functions, both of which are essential for PBP 2a maturation, the key determinant of ß-lactam resistance. These observations provide for the first time evidence that synergistic effects between DAP and ß-lactams involve PrsA posttranscriptional regulation of CM-associated PBP 2a.


Asunto(s)
Daptomicina/farmacología , beta-Lactamas/farmacología , Proteínas Bacterianas/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mutación , Oxacilina/farmacología , Proteínas de Unión a las Penicilinas/genética
8.
Antimicrob Agents Chemother ; 58(10): 5736-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25022592

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is an important infectious human pathogen responsible for diseases ranging from skin and soft tissue infections to life-threatening endocarditis. ß-Lactam resistance in MRSA involves acquisition of penicillin-binding protein 2a (PBP2a), a protein with low affinity for ß-lactams that mediates cell wall assembly when the normal staphylococcal PBPs (PBP1 to -4) are blocked by these agents. Many MRSA strains display heterogeneous expression of resistance (HeR) against ß-lactam antibiotics. The ß-lactam-mediated homoresistant (HoR) phenotype is associated with both expression of the mecA gene and activation of the LexA-RecA-mediated SOS response, a regulatory network induced in response to DNA damage. Ceftaroline (CPT) is the only FDA-approved cephalosporin targeting PBP2a. We investigated the mechanistic basis of CPT activity against HeR-MRSA strains, including a set of strains displaying an intermediate level of resistance to CPT. Mechanistically, we found that 1 exposure of HeR-MRSA to subinhibitory concentrations of CPT selected for the HoR derivative activated the SOS response and increased mutagenesis. Importantly, CPT-selected HoR cells remained susceptible to CPT while still being resistant to most ß-lactams, and 2-CPT activity in HeR-MRSA resided in an attenuated induction of mecA expression in comparison to other ß-lactams. In addition, 3-CPT intermediate-resistant strains displayed a significant increase in CPT-induced mecA expression accompanied by mutations in PBP2, which together may interfere with the complete repression by CPT of both PBP2a and PBP2a-PBP2 interactions and thus be a determining factor in the low level of CPT resistance in the absence of mecA gene mutations. The present study provides mechanistic evidence that CPT represents an alternative therapeutic option for the treatment of heteroresistant MRSA strains.


Asunto(s)
Antibacterianos/farmacología , Cefalosporinas/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mutación , Resistencia betalactámica/genética , beta-Lactamas/farmacología , Ceftarolina
10.
Antimicrob Agents Chemother ; 56(12): 6192-200, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22985884

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has emerged to be one of the most important pathogens both in health care and in community-onset infections. Daptomycin (DAP) is a cyclic anionic lipopeptide recommended for treatment of skin infections, bacteremia, and right-sided endocarditis caused by MRSA. Resistance to DAP (DAP(r)) has been reported in MRSA and is mostly accompanied by a parallel decrease in oxacillin resistance, a process known as the "seesaw effect." Our study provides evidence that the seesaw effect applies to other ß-lactams and carbapenems of clinical use, including nafcillin (NAF), cefotaxime (CTX), amoxicillin-clavulanic (AMC), and imipenem (IMP), in heterogeneous DAP(r) MRSA strains but not in MRSA strains expressing homogeneous ß-lactam resistance. The antibacterial efficacy of DAP in combination with ß-lactams was evaluated in isogenic DAP-susceptible (DAP(s))/Dap(r) MRSA strains originally obtained from patients that failed DAP monotherapy. Both in vitro (MIC, synergy-kill curve) and in vivo (wax worm model) approaches were used. In these models, DAP and a ß-lactam proved to be highly synergistic against both heterogeneous and homogeneous clinical DAP(r) MRSA strains. Mechanistically, ß-lactams induced a reduction in the cell net positive surface charge, reverting the increased repulsion provoked by DAP alone, an effect that may favor the binding of DAP to the cell surface. The ease of in vitro mutant selection was observed when DAP(s) MRSA strains were exposed to DAP. Importantly, the combination of DAP and a ß-lactam prevented the selection of DAP(r) variants. In summary, our data show that the DAP-ß-lactam combination may significantly enhance both the in vitro and in vivo efficacy of anti-MRSA therapeutic options against DAP(r) MRSA infections and represent an option in preventing DAP(r) selection in persistent or refractory MRSA infections.


Asunto(s)
Antibacterianos/farmacología , Daptomicina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , beta-Lactamas/farmacología , Combinación Amoxicilina-Clavulanato de Potasio/farmacología , Animales , Cefotaxima/farmacología , ADN/genética , Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Imipenem/farmacología , Insectos , Larva/microbiología , Pruebas de Sensibilidad Microbiana , Mutación/genética , Mutación/fisiología , Nafcilina/farmacología , Oxacilina/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
11.
Antimicrob Agents Chemother ; 56(1): 92-102, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21986832

RESUMEN

Daptomycin (DAP) is a new class of cyclic lipopeptide antibiotic highly active against methicillin-resistant Staphylococcus aureus (MRSA) infections. Proposed mechanisms involve disruption of the functional integrity of the bacterial membrane in a Ca-dependent manner. In the present work, we investigated the molecular basis of DAP resistance in a group of isogenic MRSA clinical strains obtained from patients with S. aureus infections after treatment with DAP. Different point mutations were found in the mprF gene in DAP-resistant (DR) strains. Investigation of the mprF L826F mutation in DR strains was accomplished by inactivation and transcomplementation of either full-length wild-type or mutated mprF in DAP-susceptible (DS) strains, revealing that they were mechanistically linked to the DR phenotype. However, our data suggested that mprF was not the only factor determining the resistance to DAP. Differential gene expression analysis showed upregulation of the two-component regulatory system vraSR. Inactivation of vraSR resulted in increased DAP susceptibility, while complementation of vraSR mutant strains restored DAP resistance to levels comparable to those observed in the corresponding DR wild-type strain. Electron microscopy analysis showed a thicker cell wall in DR CB5012 than DS CB5011, an effect that was related to the impact of vraSR and mprF mutations in the cell wall. Moreover, overexpression of vraSR in DS strains resulted in both increased resistance to DAP and decreased resistance to oxacillin, similar to the phenotype observed in DR strains. These results support the suggestion that, in addition to mutations in mprF, vraSR contributes to DAP resistance in the present group of clinical strains.


Asunto(s)
Aminoaciltransferasas/genética , Proteínas Bacterianas/genética , Daptomicina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/tratamiento farmacológico , Aminoaciltransferasas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Genotipo , Humanos , Resistencia a la Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/ultraestructura , Microscopía Electrónica , Mutación , Fenotipo , Plásmidos , Infecciones Estafilocócicas/microbiología , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Transformación Bacteriana
12.
Pathology ; 54(3): 351-356, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35221043

RESUMEN

The emergence of the B.1.617.2 (Delta) variant of the severe acute syndrome coronavirus (SARS-CoV-2) that emerged in 2019 (COVID-19), resulted in a surge of cases in India and has expanded and been detected across the world, including in the United States. The B.1.617.2 (Delta) variant has been seen to be twice more transmissible coupled with potential increases in disease severity and immune escape. As a result, case numbers and hospitalisations are once again on the rise in the USA. On 16 July 2021, the Centers for Disease Control and Prevention (CDC) reported a 7-day average 69.3% increase in new cases and a 35% increase in hospitalisations. Although the gold standard for SARS-CoV-2 variants identification remains genomic sequencing, this approach is not accessible to many clinical laboratories. The main goal of this study was to validate and implement the detection of the B.1.617.2 (Delta) variant utilising an open reverse transcription polymerase chain reaction (RT-PCR) platform by explicitly detecting the S-gene target failure (SGTF) corresponding to the deletion of two amino acids (ΔE156/ΔF157) characteristic of B.1.617.2 (Delta) variant. This approach was conceived as a rapid screening of B.1.617.2 (Delta) variant in conjunction with CDC's recommended N1 (nucleocapsid gene), N2, and RP (human RNase P) genes, as a pre-screening tool prior to viral genomic sequencing. We assessed 4,937 samples from 5 July to 5 September 2021. We identified the B.1.617.2 (Delta) variant in 435 of 495 positive samples (87.8%); the additional positive samples (7 samples, 1.4%) were found to belong to the B.1.1.7 (Alpha, UK) lineage and the remaining 53 samples (10.7%) were reported as 'other' lineages. Whole genome sequencing of 46 randomly selected samples validated the strains identified as positive and negative for the B.1.617.2 (Delta) variant and confirmed the S gene deletion in addition to B.1.617.2 characteristic mutations including L452R, T478K, P681R and D950N located in the spike protein. This modality has been used as routine testing at the Riverside University System Health (RUHS) Medical Center as a method for detection of B.1.617.2 (Delta) to pre-screen samples before genome sequencing. The assay can be easily implemented in clinical laboratories, most notably those with limited economic resources and access to genomic platforms.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genómica , Humanos , Mutación , SARS-CoV-2/genética
13.
J Biol Chem ; 285(13): 10064-10077, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20065354

RESUMEN

Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-kappaB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (gamma-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-kappaB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-kappaB activation (e.g. in I kappaB alpha super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-kappaB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-kappaB activation, blocked TNFalpha- but not HDACI-mediated NF-kappaB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-kappaB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, gamma-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-kappaB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-kappaB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Inhibidores de Histona Desacetilasas/metabolismo , Leucemia/tratamiento farmacológico , Leucemia/enzimología , FN-kappa B/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Células HL-60 , Humanos , Quinasa I-kappa B/metabolismo , Células Jurkat , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno , Proteína SUMO-1/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Células U937
14.
Antimicrob Agents Chemother ; 55(7): 3176-86, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21537016

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) strains are characterized by a heterogeneous expression of resistance. We have previously shown in clinical oxacillin-susceptible, mecA-positive MRSA strains that selection from a very heterogeneous (HeR) to highly homogeneous (HoR) resistant phenotype was mediated by acquisition of mutations through an oxacillin-induced SOS response. In the present study, we used a spotted DNA microarray to evaluate differential gene expression during HeR-HoR selection and found increased expression of the agr two-component regulatory system. We hypothesized that increased expression of agr represents a mechanistically relevant component of this process. We demonstrated that inactivation of agr during the HeR-HoR selection process results in a significant increase in mutation rate; these effects were reversed by complementing the agr mutant. Furthermore, we found that extemporal ectopic expression of agr and, more specifically, RNAII in agr-null mutant HeR cells suppressed mutation frequency and the capacity of these cells to undergo the HeR-HoR selection. These findings sustain the concept that increased expression of agr during HeR-HoR selection plays a critical role in regulating the ß-lactam-induced increased mutation rate in very heterogeneous MRSA strains. Moreover, they indicate that a temporally controlled increase in agr expression is required to tightly modulate SOS-mediated mutation rates, which then allows for full expression of oxacillin homogeneous resistance in very heterogeneous clinical MRSA strains.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Oxacilina/farmacología , Prueba de Complementación Genética , Genotipo , Pruebas de Sensibilidad Microbiana , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Plásmidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Antibiotics (Basel) ; 10(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34827237

RESUMEN

Staphylococcus pseudintermedius is an important pathogen responsible for infections in dogs and in humans. The emergence and dissemination of methicillin-resistant S. pseudintermedius (MRSP) and the multidrug resistance frequently seen in this species make difficult the treatment of these pathogens. The cefoxitin disk is widely used as a marker of methicillin resistance mediated by the mecA gene in Staphylococcus aureus and other staphylococcal species; however, it is not useful to detect ß-lactam resistance of MRSP in clinical microbiology laboratories. The purpose of this study was to elucidate the molecular bases of the dissociated phenotype between oxacillin and cefoxitin antibiotics. By using a combinatorial approach that included the Penicillin-Binding Proteins' (PBP) profile, their affinity for different ß-lactam antibiotics and the analyses of PBPs' sequence, we provide evidence that PBP4 showed still affinity for its target cefoxitin, impairing its phenotypic resistant detection in MRSP. Together, these findings provide evidence that S. pseudintermedius PBP4 is directly associated with the dissociated oxacillin and cefoxitin phenotype.

16.
Nat Commun ; 12(1): 7333, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921145

RESUMEN

The growing knowledge of ferroptosis has suggested the role and therapeutic potential of ferroptosis in cancer, but has not been translated into effective therapy. Liver cancer, primarily hepatocellular carcinoma (HCC), is highly lethal with limited treatment options. LIFR is frequently downregulated in HCC. Here, by studying hepatocyte-specific and inducible Lifr-knockout mice, we show that loss of Lifr promotes liver tumorigenesis and confers resistance to drug-induced ferroptosis. Mechanistically, loss of LIFR activates NF-κB signaling through SHP1, leading to upregulation of the iron-sequestering cytokine LCN2, which depletes iron and renders insensitivity to ferroptosis inducers. Notably, an LCN2-neutralizing antibody enhances the ferroptosis-inducing and anticancer effects of sorafenib on HCC patient-derived xenograft tumors with low LIFR expression and high LCN2 expression. Thus, anti-LCN2 therapy is a promising way to improve liver cancer treatment by targeting ferroptosis.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Ferroptosis , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Lipocalina 2/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/ultraestructura , Línea Celular Tumoral , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Lipocalina 2/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/ultraestructura , Masculino , Ratones Endogámicos C57BL , Piperazinas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Transducción de Señal/efectos de los fármacos , Sorafenib/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Commun Biol ; 3(1): 599, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093601

RESUMEN

Chronic airways infection with methicillin-resistant Staphylococcus aureus (MRSA) is associated with worse respiratory disease cystic fibrosis (CF) patients. Ceftaroline is a cephalosporin that inhibits the penicillin-binding protein (PBP2a) uniquely produced by MRSA. We analyzed 335 S. aureus isolates from CF sputum samples collected at three US centers between 2015-2018. Molecular relationships demonstrated that high-level resistance of preceding isolates to carbapenems were associated with subsequent isolation of ceftaroline resistant CF MRSA. In vitro evolution experiments showed that pre-exposure of CF MRSA to meropenem with further selection with ceftaroline implied mutations in mecA and additional mutations in pbp1 and pbp2, targets of carbapenems; no effects were achieved by other ß-lactams. An in vivo pneumonia mouse model showed the potential therapeutic efficacy of ceftaroline/meropenem combination against ceftaroline-resistant CF MRSA infections. Thus, the present findings highlight risk factors and potential therapeutic strategies offering an opportunity to both prevent and address antibiotic resistance in this patient population.


Asunto(s)
Carbapenémicos/farmacología , Cefalosporinas/farmacología , Fibrosis Quística/complicaciones , Farmacorresistencia Bacteriana Múltiple , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/etiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Carbapenémicos/uso terapéutico , Cefalosporinas/uso terapéutico , Quimioterapia Combinada , Genoma Bacteriano , Humanos , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mutación , Infecciones Estafilocócicas/tratamiento farmacológico , Ceftarolina
18.
Cancer Res ; 67(19): 9490-500, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17909059

RESUMEN

Interactions between the multikinase inhibitor sorafenib and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were examined in malignant hematopoietic cells. Pretreatment (24 h) of U937 leukemia cells with 7.5 micromol/L sorafenib dramatically increased apoptosis induced by sublethal concentrations of TRAIL/Apo2L (75 ng/mL). Similar interactions were observed in Raji, Jurkat, Karpas, K562, U266 cells, primary acute myelogenous leukemia blasts, but not in normal CD34+ bone marrow cells. Sorafenib/TRAIL-induced cell death was accompanied by mitochondrial injury and release of cytochrome c, Smac, and AIF into the cytosol and caspase-9, caspase-3, caspase-7, and caspase-8 activation. Sorafenib pretreatment down-regulated Bcl-xL and abrogated Mcl-1 expression, whereas addition of TRAIL sharply increased Bid activation, conformational change of Bak (ccBak) and Bax (ccBax), and Bax translocation. Ectopic Mcl-1 expression significantly attenuated sorafenib/TRAIL-mediated lethality and dramatically reduced ccBak while minimally affecting levels of ccBax. Similarly, inhibition of the receptor-mediated apoptotic cascade with a caspase-8 dominant-negative mutant significantly blocked sorafenib/TRAIL-induced lethality but not Mcl-1 down-regulation or Bak/Bax conformational change, indicating that TRAIL-mediated receptor pathway activation is required for maximal lethality. Sorafenib/TRAIL did not increase expression of DR4/DR5, or recruitment of procaspase-8 or FADD to the death-inducing signaling complex (DISC), but strikingly increased DISC-associated procaspase-8 activation. Sorafenib also down-regulated cFLIP(L), most likely through a translational mechanism, in association with diminished eIF4E phosphorylation, whereas ectopic expression of cFLIP(L) significantly reduced sorafenib/TRAIL lethality. Together, these results suggest that in human leukemia cells, sorafenib potentiates TRAIL-induced lethality by down-regulating Mcl-1 and cFLIP(L), events that cooperate to engage the intrinsic and extrinsic apoptotic cascades, culminating in pronounced mitochondrial injury and apoptosis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Bencenosulfonatos/farmacología , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Leucemia/tratamiento farmacológico , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Piridinas/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Apoptosis/fisiología , Bencenosulfonatos/administración & dosificación , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/biosíntesis , Caspasa 8/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Leucemia/metabolismo , Leucemia/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas de Neoplasias/biosíntesis , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Piridinas/administración & dosificación , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/biosíntesis , Receptores del Factor de Necrosis Tumoral/biosíntesis , Sorafenib , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Células U937 , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
19.
Mol Cancer Ther ; 7(10): 3285-97, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18852132

RESUMEN

The role of reactive oxygen species (ROS) production on DNA damage and potentiation of fludarabine lethality by the histone deacetylase inhibitor (HDACI) LAQ-824 was investigated in human leukemia cells. Preexposure (24 h) of U937, HL-60, Jurkat, or K562 cells to LAQ-824 (40 nmol/L) followed by fludarabine (0.4 micromol/L) dramatically potentiated apoptosis (>or=75%). LAQ-824 triggered an early ROS peak (30 min-3 h), which declined by 6 h, following LAQ-824-induced manganese superoxide dismutase 2 (Mn-SOD2) upregulation. LAQ-824/fludarabine lethality was significantly diminished by either ROS scavengers N-acetylcysteine or manganese (III) tetrakis (4-benzoic acid) porphyrin or ectopic Mn-SOD2 expression and conversely increased by Mn-SOD2 antisense knockdown. During this interval, LAQ-824 induced early (4-8 h) increases in gamma-H2AX, which persisted (48 h) secondary to LAQ-824-mediated inhibition of DNA repair (e.g., down-regulation of Ku86 and Rad50, increased Ku70 acetylation, diminished Ku70 and Ku86 DNA-binding activity, and down-regulated DNA repair genes BRCA1, CHEK1, and RAD51). Addition of fludarabine further potentiated DNA damage, which was incompatible with cell survival, and triggered multiple proapoptotic signals including activation of nuclear caspase-2 and release of histone H1.2 into the cytoplasm. The latter event induced activation of Bak and culminated in pronounced mitochondrial injury and apoptosis. These findings provide a mechanistic basis for understanding the role of early HDACI-induced ROS generation and modulation of DNA repair processes in potentiation of nucleoside analogue-mediated DNA damage and lethality in leukemia. Moreover, they show for the first time the link between HDACI-mediated ROS generation and the recently reported DNA damage observed in cells exposed to these agents.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos/farmacología , Leucemia/enzimología , Especies Reactivas de Oxígeno/metabolismo , Vidarabina/análogos & derivados , Acetilación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Caspasa 2/metabolismo , Línea Celular Tumoral , Citosol/efectos de los fármacos , Citosol/metabolismo , Daño del ADN , Reparación del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Histonas/metabolismo , Humanos , Leucemia/patología , Superóxido Dismutasa/metabolismo , Vidarabina/farmacología , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
20.
mSphere ; 4(1)2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760612

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) threatens human health in hospital and community settings. The lipopeptide antibiotic daptomycin (DAP) is a frequently used treatment option for MRSA infection. DAP exposure can cause bacterial resistance because mutations are induced in genes implicated in cell membrane and cell wall metabolism. Adaptations aimed at surviving antimicrobial pressure can affect bacterial physiology and modify in vivo aptitude and pathogenesis. In this study, clinical DAP-susceptible (DAPs) and DAP-resistant (DAPr) MRSA isolates were used to investigate associations between DAP resistance and staphylococcal virulence. We previously found that VraSR is a critical sensor of cell membrane/wall homeostasis associated with DAP acquisition during MRSA infection. The present study found that DAPr CB1634 and CB5014 MRSA strains with vraSR upregulation were less virulent than their susceptible counterparts, CB1631 and CB5013. Differential gene-transcription profile analysis revealed that DAPr CB1634 had decreased agr two-component system expression, virulence factors, and highly suppressed hemolysis activity. Functional genetic analysis performed in DAPr CB1634 strains using vraSR inactivation followed by gene complementation found that vraSR acted as a transcriptional agrA regulator. These results indicated that VraSR has a broad range of regulatory functions. VraSR also appeared to affect DAPr adherence to epithelial cells, which would affect DAPr strain colonization and survival in the host. The correlation between DAP resistance and decreased virulence was also found in the CB5013 (DAPs) and CB5014 (DAPr) pair. Taken together, these findings are the first evidence that DAP resistance and MRSA virulence are tightly connected and involve compromised expression of regulatory and virulence determinants.IMPORTANCE Methicillin-resistant S. aureus continues to develop resistance to antimicrobials, including those in current clinical use as daptomycin (DAP). Resistance to DAP arises by mutations in cell membrane and cell wall genes and/or upregulation of the two-component VraSR system. However, less is known about the connection between the pathogen and virulence traits during DAP resistance development. We provide new insights into VraSR and its regulatory role for virulence factors during DAP resistance, highlighting coordinated interactions that favor the higher persistence of MRSA DAP-resistant strains in the infected host.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Daptomicina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Animales , Adhesión Bacteriana , Farmacorresistencia Bacteriana Múltiple , Células Epiteliales/microbiología , Regulación Bacteriana de la Expresión Génica , Genotipo , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones SCID , Pruebas de Sensibilidad Microbiana , Fenotipo , Sepsis/microbiología , Infecciones Estafilocócicas/microbiología , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA