Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 29(Pt 5): 1141-1151, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36073872

RESUMEN

Serial synchrotron crystallography enables the study of protein structures under physiological temperature and reduced radiation damage by collection of data from thousands of crystals. The Structural Biology Center at Sector 19 of the Advanced Photon Source has implemented a fixed-target approach with a new 3D-printed mesh-holder optimized for sample handling. The holder immobilizes a crystal suspension or droplet emulsion on a nylon mesh, trapping and sealing a near-monolayer of crystals in its mother liquor between two thin Mylar films. Data can be rapidly collected in scan mode and analyzed in near real-time using piezoelectric linear stages assembled in an XYZ arrangement, controlled with a graphical user interface and analyzed using a high-performance computing pipeline. Here, the system was applied to two ß-lactamases: a class D serine ß-lactamase from Chitinophaga pinensis DSM 2588 and L1 metallo-ß-lactamase from Stenotrophomonas maltophilia K279a.


Asunto(s)
Stenotrophomonas maltophilia , Biología , Cristalografía , Proteínas
2.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 772-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25849388

RESUMEN

Radiation damage is an unavoidable obstacle in X-ray crystallographic data collection for macromolecular structure determination, so it is important to know how much radiation a sample can endure before being degraded beyond an acceptable limit. In the literature, the threshold at which the average intensity of all recorded reflections decreases to a certain fraction of the initial value is called the `dose limit'. The first estimated D50 dose-limit value, at which the average diffracted intensity was reduced to 50%, was 20 MGy and was derived from observing sample decay in electron-diffraction experiments. A later X-ray study carried out at 100 K on ferritin protein crystals arrived at a D50 of 43 MGy, and recommended an intensity reduction of protein reflections to 70%, D70, corresponding to an absorbed dose of 30 MGy, as a more appropriate limit for macromolecular crystallography. In the macromolecular crystallography community, the rate of intensity decay with dose was then assumed to be similar for all protein crystals. A series of diffraction images of cryocooled (100 K) thaumatin crystals at identical small, 2° rotation intervals were recorded at X-ray energies of 6.33 , 12.66 and 19.00 keV. Five crystals were used for each wavelength. The decay in the average diffraction intensity to 70% of the initial value, for data extending to 2.45 Šresolution, was determined to be about 7.5 MGy at 6.33 keV and about 11 MGy at the two higher energies.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas de Plantas/química , Plantas/química , Cristalización
3.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 10): 1430-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22993097

RESUMEN

The accuracy of X-ray diffraction data depends on the properties of the crystalline sample and on the performance of the data-collection facility (synchrotron beamline elements, goniostat, detector etc.). However, it is difficult to evaluate the level of performance of the experimental setup from the quality of data sets collected in rotation mode, as various crystal properties such as mosaicity, non-uniformity and radiation damage affect the measured intensities. A multiple-image experiment, in which several analogous diffraction frames are recorded consecutively at the same crystal orientation, allows minimization of the influence of the sample properties. A series of 100 diffraction images of a thaumatin crystal were measured on the SBC beamline 19BM at the APS (Argonne National Laboratory). The obtained data were analyzed in the context of the performance of the data-collection facility. An objective way to estimate the uncertainties of individual reflections was achieved by analyzing the behavior of reflection intensities in the series of analogous diffraction images. The multiple-image experiment is found to be a simple and adequate method to decompose the random errors from the systematic errors in the data, which helps in judging the performance of a data-collection facility. In particular, displaying the intensity as a function of the frame number allows evaluation of the stability of the beam, the beamline elements and the detector with minimal influence of the crystal properties. Such an experiment permits evaluation of the highest possible data quality potentially achievable at the particular beamline.


Asunto(s)
Proteínas de Plantas/química , Cristalización , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA