Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Technol ; 45(12): 2388-2401, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36734624

RESUMEN

The widespread use of pesticides requires effective detection and quantification tools to improve monitoring of environmental quality. Electrochemical sensors offer a fast and sensitive response, and can also be optimized by combining several constituents and techniques, including biodegradable materials, being useful in the determination of chemical agents from environmental samples. Here, we produced a polymer-based sensor for 2,4,6-trichlorophenol determination, through electrospinning of poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blend with graphite. The graphite-containing fibres were thermally treated and wetted in mineral oil, thus forming a paste, used as an electrode in the electrochemical sensor. The thermal analysis indicated a disorganization of the polymeric chains between the aromatic carbon chain of the PBAT polymer, resulting in a material with low enthalpy, lower crystallinity and greater thermal degradability after insertion of graphite in polymeric fibres. NIR spectra revealed changes related to the carbonyls of the polymeric ester groups. Cyclic voltammetry and square wave voltammetry techniques were applied to study the electrochemical behaviour of developed sensor. The thermal treatment of graphite-containing fibres increased the adhesion surface in which occurs the adsorption of the analyte on the electrode, which improved the peak current in the electrochemical tests. The PLA/PBAT/Graphite sensor applied to determination of 2,4,6-TCP presented the detection and quantification limits of 7.84 × 10-8 mol L-1 (0.0155 mg L-1) and 2.36 × 10-7 mol L-1 (0.0466 mg L-1) with a linearity response of 1.00 × 10-7 mol L-1 and 2.00 × 10-6 mol L-1 with correlation coefficient of 0.993 (r2).


Asunto(s)
Clorofenoles , Grafito , Poliésteres , Polímeros
2.
Polymers (Basel) ; 15(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36772062

RESUMEN

This work aimed to use the electrospinning technique to obtain PBAT/PLA polymer fibers, with the semiconductors rutile titanium dioxide (TiO2-R) and magnetite iron oxide (Fe3O4), in order to promote the photocatalytic degradation of environmental contaminants. The parameters used in the electrospinning process to obtain the fibers were distance from the needle to the collecting target of 12 cm, flow of 1 mL h-1 and voltage of 14 kV. The best mass ratio of semiconductors in the polymeric fiber was defined from a 22 experimental design, and the values obtained were 10% TiO2-R, 1% Fe3O4 at pH 7.0. Polymer fibers were characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Fourier Transform Infrared (FTIR) techniques. SEM measurements indicated a reduction in fiber diameter after the incorporation of semiconductors; for the PBAT/PLA fiber, the average diameter was 0.9466 ± 0.2490 µm, and for the fiber with TiO2-R and Fe3O4 was 0.6706 ± 0.1447 µm. In the DSC, DRX, TGA and FTIR analyses, it was possible to identify the presence of TiO2-R and Fe3O4 in the fibers, as well as their interactions with polymers, demonstrating changes in the crystallinity and degradation temperature of the material. These fibers were tested against Reactive Red 195 dye, showing an efficiency of 64.0% within 24 h, showing promise for photocatalytic degradation of environmental contaminants.

3.
Environ Technol ; 42(17): 2611-2623, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31905049

RESUMEN

Biosorption of the red 4B dye was evaluated using non-colonized sugarcane bagasse and colonized by Pleurotus ostreatus. The fungal colonization caused an increase in the acid and phenolic groups, making the biosorbent surface more positive, with lower thermal stability due to decomposition of lignocellulosic compounds, lower pHpcz, and smaller pores. The biosorbents showed better adsorption at pH 2.0 and required 260 min to reach equilibrium. The kinetic data fit the pseudo-second order mathematical model, which predicts strong chemical interaction between adsorbent and adsorbate. The mathematical models that best fit the isothermal data were the combination of Langmuir for low dye concentrations and Freundlich for high dye concentrations in the solution for the non-colonized biosorbent, which predict that adsorption occurs in monolayer and multilayer, respectively. For the colonized biosorbent, the model that best fits the isothermal data (25°C and 40°C) was the Freundlich model, showing that the adsorption for this case occurs in multilayers. Thermodynamic studies (25°C, 40°C and 50°C) show that increasing temperature decreases the biosorption capacity (exothermic process for both biosorbents), and the system shows low spontaneity with increasing concentration. Also, the entropy for non-colonized sugarcane bagasse increases at low concentrations, however after fungal colonization, it decreases for both. In industrial effluent, the non-colonized biosorbent presented a higher biosorption capacity, but fungal colonization demonstrates greater sustainability by initially allowing the production of mushrooms.


Asunto(s)
Pleurotus , Saccharum , Contaminantes Químicos del Agua , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Cinética , Termodinámica , Contaminantes Químicos del Agua/análisis
4.
J Environ Health Sci Eng ; 18(2): 809-823, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33312604

RESUMEN

Although not considered poisonous and with natural occurrence, Zn contamination is mainly related to anthropic actions. This research aim was to develop, from crambe wastes, adsorbents with high adsorption capacity of Zn2+. The crambe biomass was modified with H2O2, H2SO4 and NaOH 0.1 mol L-1, resulting in four crambe-based adsorbents: C. in natura (unmodified), C. H2O2, C. H2SO4 and C. NaOH. These were studied by determination of their chemical components, SEM, FTIR, pHPZC, thermal stability (by TG/DTG curves), SSA, pore volume and pore diameter (by BET and BJH). Adsorption studies were also carried out to evaluate its Zn removal capacity. Evaluations were taken on adsorbent dose and the influence of the pH, as well as studies on adsorption kinetics and equilibrium. These results were evaluated by pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Langmuir, Freundlich, Dubinin-Radushkevich and Sips (linear and nonlinear models). Results show that the crambe-based adsorbents may have functional groups such as hydroxyls, amides, carbonyls and carboxylates, which may be responsible for the Zn2+adsorption. The materials have heterogeneous structure, allowing the occurrence of mono and multilayer adsorption of Zn. The finest results point out the occurrence of mono and multilayer of Zn2+ (evidenced by Sips-nonlinear model), with an increase in Qsat of 72% (C. H2O2), 22% (C. H2SO4) and 80% (C. NaOH). The developed crambe adsorbents have low cost of production (since the raw material is until now a solid waste) and have high removal ratio of Zn2+ from waters, being a promising technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA