Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 590(7846): 473-479, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33408417

RESUMEN

Astrocytes are glial cells that are abundant in the central nervous system (CNS) and that have important homeostatic and disease-promoting functions1. However, little is known about the homeostatic anti-inflammatory activities of astrocytes and their regulation. Here, using high-throughput flow cytometry screening, single-cell RNA sequencing and CRISPR-Cas9-based cell-specific in vivo genetic perturbations in mice, we identify a subset of astrocytes that expresses the lysosomal protein LAMP12 and the death receptor ligand TRAIL3. LAMP1+TRAIL+ astrocytes limit inflammation in the CNS by inducing T cell apoptosis through TRAIL-DR5 signalling. In homeostatic conditions, the expression of TRAIL in astrocytes is driven by interferon-γ (IFNγ) produced by meningeal natural killer (NK) cells, in which IFNγ expression is modulated by the gut microbiome. TRAIL expression in astrocytes is repressed by molecules produced by T cells and microglia in the context of inflammation. Altogether, we show that LAMP1+TRAIL+ astrocytes limit CNS inflammation by inducing T cell apoptosis, and that this astrocyte subset is maintained by meningeal IFNγ+ NK cells that are licensed by the microbiome.


Asunto(s)
Astrocitos/inmunología , Microbioma Gastrointestinal/inmunología , Inflamación/prevención & control , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Proteínas de Membrana de los Lisosomas/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Animales , Apoptosis , Astrocitos/metabolismo , Biomarcadores , Sistema Nervioso Central/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/prevención & control , Femenino , Homeostasis , Humanos , Inflamación/inmunología , Meninges/citología , Meninges/inmunología , Ratones , Ratones Endogámicos C57BL , Linfocitos T/citología , Linfocitos T/inmunología
2.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38719447

RESUMEN

Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.


Asunto(s)
Giro del Cíngulo , Macaca mulatta , Animales , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiología , Masculino , Femenino , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M1/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/fisiología , Acetilcolina/metabolismo , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Neuronas/fisiología
3.
Hippocampus ; 34(2): 52-57, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38189522

RESUMEN

The famous amnesic patient Henry Molaison (H.M.) died on December 2, 2008. After extensive in situ magnetic resonance imaging in Boston, his brain was removed at autopsy and transported to the University of California San Diego. There the brain was prepared for frozen sectioning and cut into 2401, 70 µm coronal slices. While preliminary analyses of the brain sections have been reported, a comprehensive microscopic neuroanatomical analysis of the state of H.M.'s brain at the time of his death has not yet been published. The brain tissue and slides were subsequently moved to the University of California Davis and the slides digitized at high resolution. Initial stages of producing a website for the public viewing of the images were also carried out. Recently, the slides, digital images, and tissue have been transferred to Boston University for permanent archiving. A new steering committee has been established and plans are in place for completion of a freely accessible H.M. website. Research publications on the microscopic anatomy and neuropathology of H.M.'s brain at the time of his death are also planned. We write this commentary to provide the hippocampus and memory neuroscience communities with a brief summary of what has transpired following H.M.'s death and outline plans for future publications and a tissue archive.


Asunto(s)
Encéfalo , Hipocampo , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética
4.
J Neuroinflammation ; 20(1): 201, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660145

RESUMEN

Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke or traumatic brain injury. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys following injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. A focal lesion was induced via surgical ablation of pial blood vessels over lying the cortical hand representation of M1 of aged female rhesus monkeys, that received intravenous infusions of either vehicle (veh) or EVs 24 h and again 14 days post-injury. The current study used this same cohort to address how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high-resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC). We compared this lesion cohort to age-matched non-lesion controls (ctr). Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EVs on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglia-spine contacts. Our results suggest that EV treatment may enhance synaptic plasticity via clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic function to support functional recovery after injury.


Asunto(s)
Vesículas Extracelulares , Microglía , Femenino , Animales , Macaca mulatta , Complemento C1q , Recuperación de la Función
5.
Cereb Cortex ; 32(10): 2170-2196, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34613380

RESUMEN

The laminar cellular and circuit mechanisms by which the anterior cingulate cortex (ACC) exerts flexible control of motor and affective information for goal-directed behavior have not been elucidated. Using multimodal tract-tracing, in vitro patch-clamp recording and computational approaches in rhesus monkeys (M. mulatta), we provide evidence that specialized motor and affective network dynamics can be conferred by layer-specific biophysical and structural properties of ACC pyramidal neurons targeting two key downstream structures -the dorsal premotor cortex (PMd) and the amygdala (AMY). AMY-targeting neurons exhibited significant laminar differences, with L5 more excitable (higher input resistance and action potential firing rates) than L3 neurons. Between-pathway differences were found within L5, with AMY-targeting neurons exhibiting greater excitability, apical dendritic complexity, spine densities, and diversity of inhibitory inputs than PMd-targeting neurons. Simulations using a pyramidal-interneuron network model predict that these layer- and pathway-specific single-cell differences contribute to distinct network oscillatory dynamics. L5 AMY-targeting networks are more tuned to slow oscillations well-suited for affective and contextual processing timescales, while PMd-targeting networks showed strong beta/gamma synchrony implicated in rapid sensorimotor processing. These findings are fundamental to our broad understanding of how layer-specific cellular and circuit properties can drive diverse laminar activity found in flexible behavior.


Asunto(s)
Giro del Cíngulo , Corteza Prefrontal , Potenciales de Acción/fisiología , Dendritas , Giro del Cíngulo/fisiología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología
6.
PLoS Genet ; 16(5): e1008742, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32392208

RESUMEN

The rhesus macaque is an abundant species of Old World monkeys and a valuable model organism for biomedical research due to its close phylogenetic relationship to humans. Copy number variation is one of the main sources of genomic diversity within and between species and a widely recognized cause of inter-individual differences in disease risk. However, copy number differences among rhesus macaques and between the human and macaque genomes, as well as the relevance of this diversity to research involving this nonhuman primate, remain understudied. Here we present a high-resolution map of sequence copy number for the rhesus macaque genome constructed from a dataset of 198 individuals. Our results show that about one-eighth of the rhesus macaque reference genome is composed of recently duplicated regions, either copy number variable regions or fixed duplications. Comparison with human genomic copy number maps based on previously published data shows that, despite overall similarities in the genome-wide distribution of these regions, there are specific differences at the chromosome level. Some of these create differences in the copy number profile between human disease genes and their rhesus macaque orthologs. Our results highlight the importance of addressing the number of copies of target genes in the design of experiments and cautions against human-centered assumptions in research conducted with model organisms. Overall, we present a genome-wide copy number map from a large sample of rhesus macaque individuals representing an important novel contribution concerning the evolution of copy number in primate genomes.


Asunto(s)
Mapeo Cromosómico , Variaciones en el Número de Copia de ADN/fisiología , Duplicación de Gen/fisiología , Macaca mulatta/genética , Animales , Mapeo Cromosómico/veterinaria , Femenino , Genética de Población , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Humanos , Macaca mulatta/clasificación , Masculino , Sistemas de Lectura Abierta/genética , Filogenia , Análisis de Secuencia de ADN/veterinaria , Especificidad de la Especie
7.
Stroke ; 53(12): 3696-3705, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36205142

RESUMEN

BACKGROUND: Cerebral small vessel disease (SVD) is common in older people and causes lacunar stroke and vascular cognitive impairment. Risk factors include old age, hypertension and variants in the genes COL4A1/COL4A2 encoding collagen alpha-1(IV) and alpha-2(IV), here termed collagen-IV, which are core components of the basement membrane. We tested the hypothesis that increased vascular collagen-IV associates with clinical hypertension and with SVD in older persons and with chronic hypertension in young and aged primates and genetically hypertensive rats. METHODS: We quantified vascular collagen-IV immunolabeling in small arteries in a cohort of older persons with minimal Alzheimer pathology (N=52; 21F/31M, age 82.8±6.95 years). We also studied archive tissue from young (age range 6.2-8.3 years) and older (17.0-22.7 years) primates (M mulatta) and compared chronically hypertensive animals (18 months aortic stenosis) with normotensives. We also compared genetically hypertensive and normotensive rats (aged 10-12 months). RESULTS: Collagen-IV immunolabeling in cerebral small arteries of older persons was negatively associated with radiological SVD severity (ρ: -0.427, P=0.005) but was not related to history of hypertension. General linear models confirmed the negative association of lower collagen-IV with radiological SVD (P<0.017), including age as a covariate and either clinical hypertension (P<0.030) or neuropathological SVD diagnosis (P<0.022) as fixed factors. Reduced vascular collagen-IV was accompanied by accumulation of fibrillar collagens (types I and III) as indicated by immunogold electron microscopy. In young and aged primates, brain collagen-IV was elevated in older normotensive relative to young normotensive animals (P=0.029) but was not associated with hypertension. Genetically hypertensive rats did not differ from normotensive rats in terms of arterial collagen-IV. CONCLUSIONS: Our cross-species data provide novel insight into sporadic SVD pathogenesis, supporting insufficient (rather than excessive) arterial collagen-IV in SVD, accompanied by matrix remodeling with elevated fibrillar collagen deposition. They also indicate that hypertension, a major risk factor for SVD, does not act by causing accumulation of brain vascular collagen-IV.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Hipertensión , Accidente Vascular Cerebral Lacunar , Animales , Ratas , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Accidente Vascular Cerebral Lacunar/complicaciones , Hipertensión/complicaciones , Encéfalo/patología , Presión Sanguínea , Colágeno Tipo IV/genética
8.
J Neurosci ; 40(17): 3385-3407, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32241837

RESUMEN

Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function.SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function.


Asunto(s)
Lesiones Encefálicas/terapia , Vesículas Extracelulares , Células Madre Mesenquimatosas , Corteza Motora/patología , Células Piramidales/patología , Recuperación de la Función/fisiología , Animales , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Modelos Animales de Enfermedad , Femenino , Macaca mulatta , Masculino , Corteza Motora/fisiopatología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología
9.
J Neurosci ; 40(1): 107-130, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31704785

RESUMEN

Individual variation in the addiction liability of amphetamines has a heritable genetic component. We previously identified Hnrnph1 (heterogeneous nuclear ribonucleoprotein H1) as a quantitative trait gene underlying decreased methamphetamine-induced locomotor activity in mice. Here, we showed that mice (both females and males) with a heterozygous mutation in the first coding exon of Hnrnph1 (H1+/-) showed reduced methamphetamine reinforcement and intake and dose-dependent changes in methamphetamine reward as measured via conditioned place preference. Furthermore, H1+/- mice showed a robust decrease in methamphetamine-induced dopamine release in the NAc with no change in baseline extracellular dopamine, striatal whole-tissue dopamine, dopamine transporter protein, dopamine uptake, or striatal methamphetamine and amphetamine metabolite levels. Immunohistochemical and immunoblot staining of midbrain dopaminergic neurons and their forebrain projections for TH did not reveal any major changes in staining intensity, cell number, or forebrain puncta counts. Surprisingly, there was a twofold increase in hnRNP H protein in the striatal synaptosome of H1+/- mice with no change in whole-tissue levels. To gain insight into the mechanisms linking increased synaptic hnRNP H with decreased methamphetamine-induced dopamine release and behaviors, synaptosomal proteomic analysis identified an increased baseline abundance of several mitochondrial complex I and V proteins that rapidly decreased at 30 min after methamphetamine administration in H1+/- mice. In contrast, the much lower level of basal synaptosomal mitochondrial proteins in WT mice showed a rapid increase. We conclude that H1+/- decreases methamphetamine-induced dopamine release, reward, and reinforcement and induces dynamic changes in basal and methamphetamine-induced synaptic mitochondrial function.SIGNIFICANCE STATEMENT Methamphetamine dependence is a significant public health concern with no FDA-approved treatment. We discovered a role for the RNA binding protein hnRNP H in methamphetamine reward and reinforcement. Hnrnph1 mutation also blunted methamphetamine-induced dopamine release in the NAc, a key neurochemical event contributing to methamphetamine addiction liability. Finally, Hnrnph1 mutants showed a marked increase in basal level of synaptosomal hnRNP H and mitochondrial proteins that decreased in response to methamphetamine, whereas WT mice showed a methamphetamine-induced increase in synaptosomal mitochondrial proteins. Thus, we identified a potential role for hnRNP H in basal and dynamic mitochondrial function that informs methamphetamine-induced cellular adaptations associated with reduced addiction liability.


Asunto(s)
Dopamina/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Metanfetamina/farmacología , Mitocondrias/efectos de los fármacos , Refuerzo en Psicología , Recompensa , Sinaptosomas/metabolismo , Animales , Ansiedad/fisiopatología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Exones/genética , Conducta Exploratoria/efectos de los fármacos , Femenino , Heterocigoto , Masculino , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Metanfetamina/toxicidad , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Reflejo de Sobresalto/efectos de los fármacos , Prueba de Desempeño de Rotación con Aceleración Constante , Trastornos Relacionados con Sustancias/fisiopatología
10.
Magn Reson Med ; 86(1): 429-441, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33619754

RESUMEN

PURPOSE: Recent observations of several preferred orientations of diffusion in deep white matter may indicate either (a) that axons in different directions are independently bundled in thick sheets and function noninteractively, or more interestingly, (b) that the axons are closely interwoven and would exhibit branching and sharp turns. This study aims to investigate whether the dependence of dMRI Q-ball signal on the interpulse time Δ can decode the smaller-than-voxel-size brain structure, in particular, to distinguish scenarios (a) and (b). METHODS: High-resolution Q-ball images of a healthy brain taken with b=8000  s/mm2 for 3 different values of Δ were analyzed. The exchange of water molecules between crossing fibers was characterized by the fourth Fourier coefficient f4(Δ) of the signal profile in the plane of crossing. To interpret the empirical results, a model consisting of differently oriented parallel sheets of cylinders was developed. Diffusion of water molecules inside and outside cylinders was simulated by the Monte Carlo method. RESULTS: Simulations predict that f4(Δ) , agreeing with the empirical results, must increase with Δ for large b-values, but may peak at a typical Δ that depends on the thickness of the cylinder sheets for intermediate b-values. Thus, the thickness of axon layers in voxels with 2 predominant orientations can be detected from empirical f4(Δ) taken at smaller b-values. CONCLUSION: Based on the simulation results, recommendations are made on how to design a dMRI experiment with optimal b-value and range of Δ in order to measure the thickness of axon sheets in the white matter, hence to distinguish (a) and (b).


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Difusión , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Sustancia Blanca/diagnóstico por imagen
11.
Cereb Cortex ; 30(12): 6191-6205, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32676671

RESUMEN

Early neuroimaging work in twin studies focused on studying genetic and environmental influence on gray matter macrostructure. However, it is also important to understand how gray matter microstructure is influenced by genes and environment to facilitate future investigations of their influence in mental disorders. Advanced diffusion MRI (dMRI) measures allow more accurate assessment of gray matter microstructure compared with conventional diffusion tensor measures. To understand genetic and environmental influence on gray matter, we used diffusion and structural MRI data from a large twin and sibling study (N = 840) and computed advanced dMRI measures including return to origin probability (RTOP), which is heavily weighted toward intracellular and intra-axonal restricted spaces, and mean squared displacement (MSD), more heavily weighted to diffusion in extracellular space and large cell bodies in gray matter. We show that while macrostructural features like brain volume are mainly genetically influenced, RTOP and MSD can together tap into both genetic and environmental influence on microstructure.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Interacción Gen-Ambiente , Sustancia Gris/anatomía & histología , Sustancia Gris/crecimiento & desarrollo , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Adulto Joven
12.
Cereb Cortex ; 28(4): 1219-1232, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28203748

RESUMEN

Brain fiber pathways are presumed to follow smooth curves but recent high angular resolution diffusion MRI (dMRI) suggests that instead they follow 3 primary axes often nearly orthogonal. To investigate this, we analyzed axon pathways under monkey primary motor cortex with (1) dMRI tractography, (2) axon tract tracing, and (3) axon immunohistochemistry. dMRI tractography shows the predicted crossings of axons in mediolateral and dorsoventral orientations and does not show axon turns in this region. Axons labeled with tract tracer in the motor cortex dispersed in the centrum semiovale by microscopically sharp axonal turns and/or branches (radii ≤15 µm) into 2 sharply defined orientations, mediolateral and dorsoventral. Nearby sections processed with SMI-32 antibody to label projection axons and SMI-312 antibody to label all axons revealed axon distributions parallel to the tracer axons. All 3 histological methods confirmed preponderant axon distributions parallel with dMRI axes with few axons (<20%) following smooth curves or diagonal orientations. These findings indicate that axons navigate deep white matter via microscopic sharp turns and branches between primary axes. They support dMRI observations of primary fiber axes, as well as the prediction that fiber crossings include navigational events not yet directly resolved by dMRI. New methods will be needed to incorporate coherent microscopic navigation into dMRI of connectivity.


Asunto(s)
Axones/fisiología , Imagen de Difusión por Resonancia Magnética , Corteza Motora/citología , Corteza Motora/diagnóstico por imagen , Fibras Nerviosas/fisiología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Macaca mulatta , Masculino , Corteza Motora/metabolismo , Proteínas de Neurofilamentos/metabolismo , Sustancia Blanca/diagnóstico por imagen
13.
Somatosens Mot Res ; 36(1): 69-77, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-31072219

RESUMEN

Motor dysfunction of the upper extremity can result from stroke, cortical injury and neurological diseases and causes significant disruption of activities of daily living. While some spontaneous recovery in terms of compensatory movements does occur after injury to cortical motor areas, full recovery is rare. The distinction between complete recovery and compensatory recovery is important as the development of compensatory movements in the upper extremity may not translate into full functional use in human patients. However, current animal models of stroke do not distinguish full recovery from compensatory recovery. We have developed a Non-Human Primate Grasp Assessment Scale (GRAS) to quantify the precise recovery of composite movement, individual digit action, and finger-thumb pinch in our rhesus monkey model of cortical injury. To date, we have applied this GRAS scale to assess the recovery of fine motor function of the hand in young control and cell-therapy treated monkeys with cortical injury confined to the hand representation in the dominant primary motor cortex. We have demonstrated that with this scale we can detect and quantify significant impairments in fine motor function of the hand, the development of compensatory function during recovery and finally a return to full fine motor function of the hand in monkeys treated with a cell therapy.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Corteza Cerebral/lesiones , Fuerza de la Mano/fisiología , Movimiento/fisiología , Recuperación de la Función/fisiología , Animales , Corteza Cerebral/fisiopatología , Macaca mulatta , Masculino
14.
Sensors (Basel) ; 19(15)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357572

RESUMEN

This study aims to characterize traumatic spinal cord injury (TSCI) neurophysiologically using an intramuscular fine-wire electromyography (EMG) electrode pair. EMG data were collected from an agonist-antagonist pair of tail muscles of Macaca fasicularis, pre- and post-lesion, and for a treatment and control group. The EMG signals were decomposed into multi-resolution subsets using wavelet transforms (WT), then the relative power (RP) was calculated for each individual reconstructed EMG sub-band. Linear mixed models were developed to test three hypotheses: (i) asymmetrical volitional activity of left and right side tail muscles (ii) the effect of the experimental TSCI on the frequency content of the EMG signal, (iii) and the effect of an experimental treatment. The results from the electrode pair data suggested that there is asymmetry in the EMG response of the left and right side muscles (p-value < 0.001). This is consistent with the construct of limb dominance. The results also suggest that the lesion resulted in clear changes in the EMG frequency distribution in the post-lesion period with a significant increment in the low-frequency sub-bands (D4, D6, and A6) of the left and right side, also a significant reduction in the high-frequency sub-bands (D1 and D2) of the right side (p-value < 0.001). The preliminary results suggest that using the RP of the EMG data, the fine-wire intramuscular EMG electrode pair are a suitable method of monitoring and measuring treatment effects of experimental treatments for spinal cord injury (SCI).


Asunto(s)
Músculo Esquelético/diagnóstico por imagen , Traumatismos de la Médula Espinal/diagnóstico por imagen , Heridas y Lesiones/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Electrodos Implantados , Electromiografía , Humanos , Macaca fascicularis , Músculo Esquelético/fisiología , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/fisiopatología , Cola (estructura animal)/fisiología , Heridas y Lesiones/diagnóstico , Heridas y Lesiones/fisiopatología
15.
Somatosens Mot Res ; 35(1): 1-10, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29447046

RESUMEN

Aged individuals experience decreased fine motor function of the hand and digits, which could result, in part, from the chronic, systemic state of inflammation that occurs with aging. Recent research for treating age-related inflammation has focused on the effects of nutraceuticals that have anti-inflammatory properties. One particular dietary polyphenol, curcumin, the principal curcuminoid of the spice turmeric, has been shown to have significant anti-inflammatory effects and there is mounting evidence that curcumin may serve to reduce systemic inflammation. Therefore, it could be useful for alleviating age-related impairments in fine motor function. To test this hypothesis we assessed the efficacy of a dietary intervention with a commercially available optimized curcumin to ameliorate or delay the effects of aging on fine motor function of the hand of rhesus monkeys. We administered oral daily doses of curcumin or a control vehicle to 11 monkeys over a 14- to 18-month period in which they completed two rounds of fine motor function testing. The monkeys receiving curcumin were significantly faster at retrieving a food reward by round 2 of testing than monkeys receiving a control vehicle. Further, the monkeys receiving curcumin demonstrated a greater degree of improvement in performance on our fine motor task by round 2 of testing than monkeys receiving a control vehicle. These findings reveal that fine motor function of the hand and digits is improved in middle-aged monkeys receiving chronic daily administration of curcumin.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Curcumina/farmacología , Desempeño Psicomotor/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Conducta Animal/efectos de los fármacos , Curcumina/administración & dosificación , Femenino , Macaca mulatta , Masculino
16.
Alzheimers Dement ; 14(5): 680-691, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29241829

RESUMEN

INTRODUCTION: An animal model of late-onset Alzheimer's disease is needed to research what causes degeneration in the absence of dominant genetic insults and why the association cortex is particularly vulnerable to degeneration. METHODS: We studied the progression of tau and amyloid cortical pathology in the aging rhesus macaque using immunoelectron microscopy and biochemical assays. RESULTS: Aging macaques exhibited the same qualitative pattern and sequence of tau and amyloid cortical pathology as humans, reaching Braak stage III/IV. Pathology began in the young-adult entorhinal cortex with protein kinase A-phosphorylation of tau, progressing to fibrillation with paired helical filaments and mature tangles in oldest animals. Tau pathology in the dorsolateral prefrontal cortex paralleled but lagged behind the entorhinal cortex, not afflicting the primary visual cortex. DISCUSSION: The aging rhesus macaque provides the long-sought animal model for exploring the etiology of late-onset Alzheimer's disease and for testing preventive strategies.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Macaca mulatta , Amiloide/metabolismo , Animales , Encéfalo/patología , Corteza Entorrinal/patología , Microscopía Inmunoelectrónica/métodos , Ovillos Neurofibrilares/patología , Fosforilación , Placa Amiloide/patología , Corteza Prefrontal , Proteínas tau/metabolismo
17.
Cereb Cortex ; 25(11): 4351-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25715284

RESUMEN

The projections from the amygdala and hippocampus (including subiculum and presubiculum) to prefrontal cortex were compared using anterograde tracers injected into macaque monkeys (Macaca fascicularis, Macaca mulatta). Almost all prefrontal areas were found to receive some amygdala inputs. These connections, which predominantly arose from the intermediate and magnocellular basal nucleus, were particularly dense in parts of the medial and orbital prefrontal cortex. Contralateral inputs were not, however, observed. The hippocampal projections to prefrontal areas were far more restricted, being confined to the ipsilateral medial and orbital prefrontal cortex (within areas 11, 13, 14, 24a, 32, and 25). These hippocampal projections principally arose from the subiculum, with the fornix providing the sole route. Thus, while the lateral prefrontal cortex essentially receives only amygdala inputs, the orbital prefrontal cortex receives both amygdala and hippocampal inputs, though these typically target different areas. Only in medial prefrontal cortex do direct inputs from both structures terminate in common sites. But, even when convergence occurs within an area, the projections predominantly terminate in different lamina (hippocampal inputs to layer III and amygdala inputs to layers I, II, and VI). The resulting segregation of prefrontal inputs could enable the parallel processing of different information types in prefrontal cortex.


Asunto(s)
Amígdala del Cerebelo/fisiología , Mapeo Encefálico , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Aminoácidos/metabolismo , Animales , Autorradiografía , Estudios de Cohortes , Femenino , Lateralidad Funcional , Macaca fascicularis , Macaca mulatta , Masculino , Vías Nerviosas/fisiología
18.
J Neurosci ; 33(5): 1927-39, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23365232

RESUMEN

We have previously shown that myelin abnormalities characterize the normal aging process of the brain and that an age-associated reduction in Klotho is conserved across species. Predominantly generated in brain and kidney, Klotho overexpression extends life span, whereas loss of Klotho accelerates the development of aging-like phenotypes. Although the function of Klotho in brain is unknown, loss of Klotho expression leads to cognitive deficits. We found significant effects of Klotho on oligodendrocyte functions, including induced maturation of rat primary oligodendrocytic progenitor cells (OPCs) in vitro and myelination. Phosphoprotein analysis indicated that Klotho's downstream effects involve Akt and ERK signal pathways. Klotho increased OPC maturation, and inhibition of Akt or ERK function blocked this effect on OPCs. In vivo studies of Klotho knock-out mice and control littermates revealed that knock-out mice have a significant reduction in major myelin protein and gene expression. By immunohistochemistry, the number of total and mature oligodendrocytes was significantly lower in Klotho knock-out mice. Strikingly, at the ultrastructural level, Klotho knock-out mice exhibited significantly impaired myelination of the optic nerve and corpus callosum. These mice also displayed severe abnormalities at the nodes of Ranvier. To decipher the mechanisms by which Klotho affects oligodendrocytes, we used luciferase pathway reporters to identify the transcription factors involved. Together, these studies provide novel evidence for Klotho as a key player in myelin biology, which may thus be a useful therapeutic target in efforts to protect brain myelin against age-dependent changes and promote repair in multiple sclerosis.


Asunto(s)
Encéfalo/metabolismo , Glucuronidasa/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Oligodendroglía/metabolismo , Animales , Recuento de Células , Supervivencia Celular/fisiología , Células Cultivadas , Cuerpo Calloso/metabolismo , Femenino , Glucuronidasa/genética , Proteínas Klotho , Ratones , Ratones Noqueados , Proteína Básica de Mielina/metabolismo , Células-Madre Neurales/metabolismo , Nervio Óptico/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT1/fisiología
19.
Dev Neurosci ; 36(6): 532-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25342495

RESUMEN

Globally, over 25% of all children under the age of 5 years experience malnutrition leading to cognitive and emotional impairments that can persist into adulthood and beyond. We use a rodent model to determine the impact of prenatal protein malnutrition on executive functions in an attentional set-shifting task and metabolic activity in prefrontal cortex (PFC) subregions critical to these behaviors. Long-Evans dams were provided with a low (6% casein) or adequate (25% casein) protein diet 5 weeks before mating and during pregnancy. At birth, the litters were culled to 8 pups and fostered to control dams on the 25% casein diet. At postnatal day 90, prenatally malnourished rats were less able to shift attentional set and reverse reward contingencies than controls, demonstrating cognitive rigidity. Naive same-sexed littermates were assessed for regional brain activity using the metabolic marker (14)C-2-deoxyglucose (2DG). The prenatally malnourished rats had lower metabolic activity than controls in prelimbic, infralimbic, anterior cingulate, and orbitofrontal cortices, but had comparable activity in the nearby piriform cortex and superior colliculus. This study demonstrates that prenatal protein malnutrition in a well-described animal model produces cognitive deficits in tests of attentional set shifting and reversal learning, similar to findings of cognitive inflexibility reported in humans exposed to early childhood malnutrition.


Asunto(s)
Atención/fisiología , Corteza Cerebral , Trastornos del Conocimiento , Función Ejecutiva/fisiología , Trastornos Nutricionales en el Feto , Corteza Prefrontal , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/fisiopatología , Desoxiglucosa , Modelos Animales de Enfermedad , Femenino , Masculino , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Embarazo , Ratas , Ratas Long-Evans , Recompensa
20.
Geroscience ; 46(2): 2503-2519, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37989825

RESUMEN

Cognitive impairment in learning, memory, and executive function occurs in normal aging even in the absence of Alzheimer's disease (AD). While neurons do not degenerate in humans or monkeys free of AD, there are structural changes including synapse loss and dendritic atrophy, especially in the dorsolateral prefrontal cortex (dlPFC), and these correlate with cognitive age-related impairment. Developmental studies revealed activity-dependent neuronal properties that lead to synapse remodeling by microglia. Microglia-mediated phagocytosis that may eliminate synapses is regulated by immune "eat me" and "don't eat me" signaling proteins in an activity-dependent manner, so that less active synapses are eliminated. Whether this process contributes to age-related synapse loss remains unknown. The present study used a rhesus monkey model of normal aging to investigate the balance between the "eat me" signal, complement component C1q, and the "don't eat me" signal, transmembrane glycoprotein CD47, relative to age-related synapse loss in dlPFC Area 46. Results showed an age-related elevation of C1q and reduction of CD47 at PSD95+ synapses that is associated with cognitive impairment. Additionally, reduced neuronal CD47 RNA expression was found, indicating that aged neurons were less able to produce the protective signal CD47. Interestingly, microglia do not show the hypertrophic morphology indicative of phagocytic activity. These findings suggest that in the aging brain, changes in the balance of immunologic proteins give microglia instructions favoring synapse elimination of less active synapses, but this may occur by a process other than classic phagocytosis such as trogocytosis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Microglía , Complemento C1q/genética , Complemento C1q/metabolismo , Antígeno CD47/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Enfermedad de Alzheimer/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA