Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Alzheimers Dement ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572865

RESUMEN

INTRODUCTION: Emerging evidence links changes in the gut microbiome to late-onset Alzheimer's disease (LOAD), necessitating examination of AD mouse models with consideration of the microbiome. METHODS: We used shotgun metagenomics and untargeted metabolomics to study the human amyloid beta knock-in (hAß-KI) murine model for LOAD compared to both wild-type (WT) mice and a model for early-onset AD (3xTg-AD). RESULTS: Eighteen-month female (but not male) hAß-KI microbiomes were distinct from WT microbiomes, with AD genotype accounting for 18% of the variance by permutational multivariate analysis of variance (PERMANOVA). Metabolomic diversity differences were observed in females, however no individual metabolites were differentially abundant. hAß-KI mice microbiomes were distinguishable from 3xTg-AD animals (81% accuracy by random forest modeling), with separation primarily driven by Romboutsia ilealis and Turicibacter species. Microbiomes were highly cage specific, with cage assignment accounting for more than 40% of the PERMANOVA variance between the groups. DISCUSSION: These findings highlight a sex-dependent variation in the microbiomes of hAß-KI mice and underscore the importance of considering the microbiome when designing studies that use murine models for AD. HIGHLIGHTS: Microbial diversity and the abundance of several species differed in human amyloid beta knock-in (hAß-KI) females but not males. Correlations to Alzheimer's disease (AD) genotype were stronger for the microbiome than the metabolome. Microbiomes from hAß-KI mice were distinct from 3xTg-AD mice. Cage effects accounted for most of the variance in the microbiome and metabolome.

2.
Artículo en Inglés | MEDLINE | ID: mdl-33139284

RESUMEN

Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.


Asunto(s)
Fibrosis Quística , Antibacterianos/uso terapéutico , Cromatografía Liquida , Fibrosis Quística/tratamiento farmacológico , Humanos , Espectrometría de Masas , Esputo
3.
Appl Environ Microbiol ; 87(23): e0144821, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34550753

RESUMEN

Municipal wastewater provides an integrated sample of a diversity of human-associated microbes across a sewershed, including viruses. Wastewater-based epidemiology (WBE) is a promising strategy to detect pathogens and may serve as an early warning system for disease outbreaks. Notably, WBE has garnered substantial interest during the coronavirus disease 2019 (COVID-19) pandemic to track disease burden through analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Throughout the COVID-19 outbreak, tracking SARS-CoV-2 in wastewater has been an important tool for understanding the spread of the virus. Unlike traditional sequencing of SARS-CoV-2 isolated from clinical samples, which adds testing burden to the health care system, in this study, metatranscriptomics was used to sequence virus directly from wastewater. Here, we present a study in which we explored RNA viral diversity through sequencing 94 wastewater influent samples across seven wastewater treatment plants (WTPs), collected from August 2020 to January 2021, representing approximately 16 million people in Southern California. Enriched viral libraries identified a wide diversity of RNA viruses that differed between WTPs and over time, with detected viruses including coronaviruses, influenza A, and noroviruses. Furthermore, single-nucleotide variants (SNVs) of SARS-CoV-2 were identified in wastewater, and we measured proportions of overall virus and SNVs across several months. We detected several SNVs that are markers for clinically important SARS-CoV-2 variants along with SNVs of unknown function, prevalence, or epidemiological consequence. Our study shows the potential of WBE to detect viruses in wastewater and to track the diversity and spread of viral variants in urban and suburban locations, which may aid public health efforts to monitor disease outbreaks. IMPORTANCE Wastewater-based epidemiology (WBE) can detect pathogens across sewersheds, which represents the collective waste of human populations. As there is a wide diversity of RNA viruses in wastewater, monitoring the presence of these viruses is useful for public health, industry, and ecological studies. Specific to public health, WBE has proven valuable during the coronavirus disease 2019 (COVID-19) pandemic to track the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) without adding burden to health care systems. In this study, we used metatranscriptomics and reverse transcription-droplet digital PCR (RT-ddPCR) to assay RNA viruses across Southern California wastewater from August 2020 to January 2021, representing approximately 16 million people from Los Angeles, Orange, and San Diego counties. We found that SARS-CoV-2 quantification in wastewater correlates well with county-wide COVID-19 case data, and that we can detect SARS-CoV-2 single-nucleotide variants through sequencing. Likewise, wastewater treatment plants (WTPs) harbored different viromes, and we detected other human pathogens, such as noroviruses and adenoviruses, furthering our understanding of wastewater viral ecology.


Asunto(s)
Virus ARN/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Viroma , Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas Residuales/virología , COVID-19/epidemiología , California , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa , Virus ARN/clasificación , Virus ARN/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Análisis de Secuencia de ARN
4.
Proc Biol Sci ; 287(1937): 20200980, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33109012

RESUMEN

Bumblebees (Bombus spp.) are important and widespread insect pollinators, but the act of foraging on flowers can expose them to harmful pesticides and chemicals such as oxidizers and heavy metals. How these compounds directly influence bee survival and indirectly affect bee health via the gut microbiome is largely unknown. As toxicants in floral nectar and pollen take many forms, we explored the genomes of bee-associated microbes for their potential to detoxify cadmium, copper, selenate, the neonicotinoid pesticide imidacloprid, and hydrogen peroxide-which have all been identified in floral nectar and pollen. We then exposed Bombus impatiens workers to varying concentrations of these chemicals via their diet and assayed direct effects on bee survival. Using field-realistic doses, we further explored the indirect effects on bee microbiomes. We found multiple putative genes in core gut microbes that may aid in detoxifying harmful chemicals. We also found that while the chemicals are largely toxic at levels within and above field-realistic concentrations, the field-realistic concentrations-except for imidacloprid-altered the composition of the bee microbiome, potentially causing gut dysbiosis. Overall, our study shows that chemicals found in floral nectar and pollen can cause bee mortality, and likely have indirect, deleterious effects on bee health via their influence on the bee microbiome.


Asunto(s)
Abejas/fisiología , Contaminantes Ambientales/toxicidad , Microbioma Gastrointestinal , Animales , Abejas/microbiología , Conducta Alimentaria , Flores , Insecticidas , Microbiota , Neonicotinoides , Nitrocompuestos , Plaguicidas/toxicidad , Néctar de las Plantas , Polen , Polinización
5.
Proc Natl Acad Sci U S A ; 114(46): E9923-E9931, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087336

RESUMEN

Many countries are utilizing reclaimed wastewater for agriculture because drought, rising temperatures, and expanding human populations are increasing water demands. Unfortunately, wastewater often contains biologically active, pseudopersistent pharmaceuticals, even after treatment. Runoff from farms and output from wastewater treatment plants also contribute high concentrations of pharmaceuticals to the environment. This study assessed the effects of common pharmaceuticals on an agricultural pest, Trichoplusia ni (Lepidoptera: Noctuidae). Larvae were reared on artificial diets spiked with contaminants of emerging concern (CECs) at environmentally relevant concentrations. Trichoplusia ni showed increased developmental time and mortality when reared on artificial diets containing antibiotics, hormones, or a mixture of contaminants. Mortality was also increased when T. ni were reared on tomatoes grown hydroponically with the same concentrations of antibiotics. The antibiotic-treated plants translocated ciprofloxacin through their tissues to roots, shoots, and leaves. Microbial communities of T. ni changed substantially between developmental stages and when exposed to CECs in their diets. Our results suggest that use of reclaimed wastewater for irrigation of crops can affect the developmental biology and microbial communities of an insect of agricultural importance.


Asunto(s)
Agricultura , Productos Agrícolas , Lepidópteros/efectos de los fármacos , Lepidópteros/crecimiento & desarrollo , Aguas Residuales/química , Contaminantes Químicos del Agua/efectos adversos , Contaminantes Químicos del Agua/química , Animales , Antibacterianos/análisis , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Ciprofloxacina/metabolismo , ADN Bacteriano , Dieta , Monitoreo del Ambiente , Hormonas/análisis , Humanos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Lepidópteros/microbiología , Solanum lycopersicum/química , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/fisiología , Consorcios Microbianos/efectos de los fármacos , Hojas de la Planta/química , Raíces de Plantas/química , Brotes de la Planta/química , ARN Ribosómico 16S/genética
6.
Environ Microbiol ; 21(9): 3417-3429, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31026366

RESUMEN

Bumble bees are important and widespread insect pollinators who face many environmental challenges. For example, bees are exposed to the metalloid selenate when foraging on pollen and nectar from plants growing in contaminated soils. As it has been shown that the microbiome of animals reduces metalloid toxicity, we assayed the ability of the bee microbiome to increase survivorship against selenate challenge. We exposed uninoculated or microbiota-inoculated Bombus impatiens workers to a field-realistic dose of 0.75 mg l-1 selenate and found that microbiota-inoculated bees survive slightly but significantly longer than uninoculated bees. Using 16S rRNA gene sequencing, we found that selenate exposure altered gut microbial community composition and relative abundance of specific core bacteria. We also grew two core bumble bee microbes - Snodgrassella alvi and Lactobacillus bombicola - in selenate-spiked media and found that these bacteria grew in the tested concentrations of 0.001-10 mg l-1 selenate. Furthermore, the genomes of these microbes harbour genes involved in selenate detoxification. The bumble bee microbiome slightly increases survivorship when the host is exposed to selenate, but the specific mechanisms and colony-level benefits under natural settings require further study.

7.
Environ Microbiol ; 21(12): 4706-4723, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31573120

RESUMEN

High temperatures (e.g., fever) and gut microbiota can both influence host resistance to infection. However, effects of temperature-driven changes in gut microbiota on resistance to parasites remain unexplored. We examined the temperature dependence of infection and gut bacterial communities in bumble bees infected with the trypanosomatid parasite Crithidia bombi. Infection intensity decreased by over 80% between 21 and 37°C. Temperatures of peak infection were lower than predicted based on parasite growth in vitro, consistent with mismatches in thermal performance curves of hosts, parasites and gut symbionts. Gut bacterial community size and composition exhibited slight but significant, non-linear, and taxon-specific responses to temperature. Abundance of total gut bacteria and of Orbaceae, both negatively correlated with infection in previous studies, were positively correlated with infection here. Prevalence of the bee pathogen-containing family Enterobacteriaceae declined with temperature, suggesting that high temperature may confer protection against diverse gut pathogens. Our results indicate that resistance to infection reflects not only the temperature dependence of host and parasite performance, but also temperature-dependent activity of gut bacteria. The thermal ecology of gut parasite-symbiont interactions may be broadly relevant to infectious disease, both in ectothermic organisms that inhabit changing climates, and in endotherms that exhibit fever-based immunity.


Asunto(s)
Abejas/microbiología , Abejas/parasitología , Crithidia/fisiología , Infecciones por Euglenozoos/veterinaria , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Crithidia/crecimiento & desarrollo , Infecciones por Euglenozoos/parasitología , Microbioma Gastrointestinal , Calor
8.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31471302

RESUMEN

Honey bees are important insect pollinators used heavily in agriculture and can be found in diverse environments. Bees may encounter toxicants such as cadmium and selenate by foraging on plants growing in contaminated areas, which can result in negative health effects. Honey bees are known to have a simple and consistent microbiome that conveys many benefits to the host, and toxicant exposure may impact this symbiotic microbial community. We used 16S rRNA gene sequencing to assay the effects that sublethal cadmium and selenate treatments had over 7 days and found that both treatments significantly but subtly altered the composition of the bee microbiome. Next, we exposed bees to cadmium and selenate and then used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to show that chemical exposure changed the bees' metabolite profiles and that compounds which may be involved in detoxification, proteolysis, and lipolysis were more abundant in treatments. Finally, we exposed several strains of bee-associated bacteria in liquid culture and found that each strain removed cadmium from its medium but that only Lactobacillus Firm-5 microbes assimilated selenate, indicating the possibility that these microbes may reduce the metal and metalloid burden on their host. Overall, our report shows that metal and metalloid exposure can affect the honey bee microbiome and metabolome and that strains of bee-associated bacteria can bioaccumulate these toxicants.IMPORTANCE Bees are important insect pollinators that may encounter environmental pollution when foraging upon plants grown in contaminated areas. Despite the pervasiveness of pollution, little is known about the effects of these toxicants on honey bee metabolism and their symbiotic microbiomes. Here, we investigated the impact of selenate and cadmium exposure on the gut microbiome and metabolome of honey bees. We found that exposure to these chemicals subtly altered the overall composition of the bees' microbiome and metabolome and that exposure to toxicants may negatively impact both host and microbe. As the microbiome of animals can reduce mortality upon metal or metalloid challenge, we grew bee-associated bacteria in media spiked with selenate or cadmium. We show that some bacteria can remove these toxicants from their media in vitro and suggest that bacteria may reduce metal burden in their hosts.


Asunto(s)
Bacterias/metabolismo , Abejas/microbiología , Bioacumulación/fisiología , Cadmio/metabolismo , Microbioma Gastrointestinal/fisiología , Ácido Selénico/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Abejas/efectos de los fármacos , Biodiversidad , Cadmio/toxicidad , Farmacorresistencia Bacteriana/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Lactobacillus/genética , Lactobacillus/metabolismo , Metaboloma , Plantas , Polinización , ARN Ribosómico 16S/metabolismo , Ácido Selénico/toxicidad , Simbiosis
9.
Microb Ecol ; 78(2): 506-516, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30552443

RESUMEN

Managed pollinators such as the alfalfa leafcutting bee, Megachile rotundata, are essential to the production of a wide variety of agricultural crops. These pollinators encounter a diverse array of microbes when foraging for food and nest-building materials on various plants. To test the hypothesis that food and nest-building source affects the composition of the bee-nest microbiome, we exposed M. rotundata adults to treatments that varied both floral and foliar source in a 2 × 2 factorial design. We used 16S rRNA gene and internal transcribed spacer (ITS) sequencing to capture the bacterial and fungal diversity of the bee nests. We found that nest microbial communities were significantly different between treatments, indicating that bee nests become inoculated with environmentally derived microbes. We did not find evidence of interactions between the fungi and bacteria within our samples. Furthermore, both the bacterial and fungal communities were quite diverse and contained numerous exact sequence variants (ESVs) of known plant and bee pathogens that differed based on treatment. Our research indicates that bees deposit plant-associated microbes into their nests, including multiple plant pathogens such as smut fungi and bacteria that cause blight and wilt. The presence of plant pathogens in larval pollen provisions highlights the potential for bee nests to act as disease reservoirs across seasons. We therefore suggest that future research should investigate the ability of bees to transmit pathogens from nest to host plant.


Asunto(s)
Bacterias/aislamiento & purificación , Abejas/microbiología , Hongos/aislamiento & purificación , Microbiota , Animales , Bacterias/clasificación , Bacterias/genética , Abejas/fisiología , Hongos/clasificación , Hongos/genética , Larva/microbiología , Medicago sativa/microbiología , Filogenia , Polen/microbiología , Polinización , ARN Ribosómico 16S
10.
Int J Syst Evol Microbiol ; 68(6): 1879-1884, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29648528

RESUMEN

Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3T (=DSM 104126T,=NRRL B-65473T), Lactobacillus timberlakei with the type strain HV_12T (=DSM 104128T,=NRRL B-65472T), and Lactobacillus quenuiae sp. nov. with the type strain HV_6T (=DSM 104127T,=NRRL B-65474T).


Asunto(s)
Abejas/microbiología , Flores/microbiología , Lactobacillus/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , California , ADN Bacteriano/genética , Ácidos Grasos/química , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Microb Ecol ; 76(3): 814-824, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29397399

RESUMEN

Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees' microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.


Asunto(s)
Bacterias/aislamiento & purificación , Abejas/microbiología , Microbioma Gastrointestinal , Animales , Bacterias/clasificación , Bacterias/genética , Abejas/fisiología , Tracto Gastrointestinal/microbiología , Filogenia , Polinización , Simbiosis
12.
Environ Monit Assess ; 190(3): 125, 2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29423658

RESUMEN

Many countries are utilizing reclaimed wastewater for agriculture as water demands due to drought, rising temperatures, and expanding human populations. Unfortunately, wastewater often contains biologically active, pseudopersistant pharmaceuticals, even after treatment. Runoff from agriculture and effluent from wastewater treatment plants also contribute high concentrations of pharmaceuticals to the environment. This study assessed the effects of common pharmaceuticals on an agricultural pest, the aphid Myzus persicae (Sulzer, Hemiptera: Aphididae). Second instar nymphs were transferred to bell peppers (Capsicum annuum) that were grown hydroponically. Treatment plants were spiked with contaminants of emerging concern (CECs) at environmentally relevant concentrations found in reclaimed wastewater. M. persicae displayed no differences in population growth or microbial community differences due to chemical treatments. Plants, however, displayed significant growth reduction in antibiotic and mixture treatments, specifically in wet root masses. Antibiotic treatment masses were significantly reduced in the total and root wet masses. Mixture treatments displayed an overall reduction in plant root wet mass. Our results suggest that the use of reclaimed wastewater for crop irrigation would not affect aphid populations, but could hinder or delay crop production.


Asunto(s)
Áfidos/efectos de los fármacos , Capsicum/fisiología , Monitoreo del Ambiente , Animales , Humanos , Raíces de Plantas , Temperatura
13.
mSystems ; 8(1): e0080722, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36651762

RESUMEN

The sequence revolution revealed that bacteria-infecting viruses, known as phages, are Earth's most abundant biological entities. Phages have far-reaching impacts on the form and function of microbial communities and play a fundamental role in ecological processes. However, even well into the sequencing revolution, we have only just begun to explore the murky waters around the phage biology iceberg. Many viral reads cannot be assigned to a culturable isolate, and reference databases are biased toward more easily collectible samples, which likely distorts our conclusions. This minireview points out alternatives to mapping reads to reference databases and highlights innovative bioinformatic and experimental approaches that can help us overcome some of the challenges in phage research and better decipher the impact of phages on microbial communities. Moving beyond the identification of novel phages, we highlight phage metabolomics as an important influencer of bacterial host cell physiology and hope to inspire the reader to consider the effects of phages on host metabolism and ecosystems at large. We encourage researchers to report unassigned/unknown sequencing reads and contigs and to continue developing alternative methods to investigate phages within sequence data.


Asunto(s)
Bacteriófagos , Microbiota , Bacteriófagos/genética , Biología
14.
mSystems ; 8(4): e0003623, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37338237

RESUMEN

Human oral microbial communities are diverse, with implications for oral and systemic health. Oral microbial communities change over time; thus, it is important to understand how healthy versus dysbiotic oral microbiomes differ, especially within and between families. There is also a need to understand how the oral microbiome composition is changed within an individual including by factors such as environmental tobacco smoke (ETS) exposure, metabolic regulation, inflammation, and antioxidant potential. Using archived saliva samples collected from caregivers and children during a 90-month follow-up assessment in a longitudinal study of child development in the context of rural poverty, we used 16S rRNA gene sequencing to determine the salivary microbiome. A total of 724 saliva samples were available, 448 of which were from caregiver/child dyads, an additional 70 from children and 206 from adults. We compared children's and caregivers' oral microbiomes, performed "stomatotype" analyses, and examined microbial relations with concentrations of salivary markers associated with ETS exposure, metabolic regulation, inflammation, and antioxidant potential (i.e., salivary cotinine, adiponectin, C-reactive protein, and uric acid) assayed from the same biospecimens. Our results indicate that children and caregivers share much of their oral microbiome diversity, but there are distinct differences. Microbiomes from intrafamily individuals are more similar than microbiomes from nonfamily individuals, with child/caregiver dyad explaining 52% of overall microbial variation. Notably, children harbor fewer potential pathogens than caregivers, and participants' microbiomes clustered into two groups, with major differences being driven by Streptococcus spp. Differences in salivary microbiome composition associated with ETS exposure, and taxa associated with salivary analytes representing potential associations between antioxidant potential, metabolic regulation, and the oral microbiome. IMPORTANCE The human oral cavity is a multi-environment habitat that harbors a diversity of microorganisms. This oral microbiome is often transmitted between cohabitating individuals, which may associate oral and systemic health within family members. Furthermore, family social ecology plays a significant role in childhood development, which may be associated with lifelong health outcomes. In this study, we collected saliva from children and their caregivers and used 16S rRNA gene sequencing to characterize their oral microbiomes. We also analyzed salivary biomeasures of environmental tobacco smoke exposure, metabolic regulation, inflammation, and antioxidant potential. We show there are differences in individuals' oral microbiomes mainly due to Streptococcus spp. that family members share much of their microbes, and several bacterial taxa associate with the selected salivary biomeasures. Our results suggest there are large-scale oral microbiome patterns, and there are likely relationships between oral microbiomes and the social ecology of families.


Asunto(s)
Microbiota , Contaminación por Humo de Tabaco , Adulto , Humanos , Niño , Contaminación por Humo de Tabaco/efectos adversos , Cuidadores , Estudios Longitudinales , ARN Ribosómico 16S/genética , Antioxidantes , Microbiota/genética , Streptococcus/genética , Inflamación
15.
Water Res ; 229: 119421, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455460

RESUMEN

Municipal wastewater provides a representative sample of human fecal waste across a catchment area and contains a wide diversity of microbes. Sequencing wastewater samples provides information about human-associated and medically important microbial populations, and may be useful to assay disease prevalence and antimicrobial resistance (AMR). Here, we present a study in which we used untargeted metatranscriptomic sequencing on RNA extracted from 275 sewage influent samples obtained from eight wastewater treatment plants (WTPs) representing approximately 16 million people in Southern California between August 2020 - August 2021. We characterized bacterial and viral transcripts, assessed metabolic pathway activity, and identified over 2,000 AMR genes/variants across all samples. Because we did not deplete ribosomal RNA, we have a unique window into AMR carried as ribosomal mutants. We show that AMR diversity varied between WTPs (as measured through PERMANOVA, P < 0.001) and that the relative abundance of many individual AMR genes/variants increased over time (as measured with MaAsLin2, Padj < 0.05). Similarly, we detected transcripts mapping to human pathogenic bacteria and viruses suggesting RNA sequencing is a powerful tool for wastewater-based epidemiology and that there are geographical signatures to microbial transcription. We captured the transcription of gene pathways common to bacterial cell processes, including central carbon metabolism, nucleotide synthesis/salvage, and amino acid biosynthesis. We also posit that due to the ubiquity of many viruses and bacteria in wastewater, new biological targets for microbial water quality assessment can be developed. To the best of our knowledge, our study provides the most complete longitudinal metatranscriptomic analysis of a large population's wastewater to date and demonstrates our ability to monitor the presence and activity of microbes in complex samples. By sequencing RNA, we can track the relative abundance of expressed AMR genes/variants and metabolic pathways, increasing our understanding of AMR activity across large human populations and sewer sheds.


Asunto(s)
Antibacterianos , Aguas Residuales , Humanos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Aguas del Alcantarillado/microbiología , Bacterias/genética , ARN , Genes Bacterianos
16.
Microbiol Spectr ; 10(6): e0305022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36374107

RESUMEN

Tobamoviruses are agriculturally relevant viruses that cause crop losses and have infected plants in many regions of the world. These viruses are frequently found in municipal wastewater, likely coming from human diet and industrial waste across wastewater catchment areas. As part of a large wastewater-based epidemiology study across Southern California, we analyzed RNA sequence data from 275 influent wastewater samples obtained from eight wastewater treatment plants with a catchment area of approximately 16 million people from July 2020 to August 2021. We assembled 1,083 high-quality genomes, enumerated viral sequencing reads, and detected thousands of single nucleotide variants from eight common tobamoviruses: bell pepper mottle virus, cucumber green mottle mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, tomato brown rugose fruit virus, tomato mosaic virus, tomato mottle mosaic virus, and tropical soda apple mosaic virus. We show that single nucleotide variants had amino acid-altering consequences along with synonymous mutations, which represents potential evolution with functional consequences in genomes of these viruses. Our study shows the importance of wastewater sequencing to monitor the genomic diversity of these plant-infecting viruses, and we suggest that our data could be used to continue tracking the genomic variability of such pathogens. IMPORTANCE Diseases caused by viruses in the genus Tobamovirus cause crop losses around the world. As with other viruses, mutation occurring in the virus's genomes can have functional consequences and may alter viral infectivity. Many of these plant-infecting viruses have been found in wastewater, likely coming from human consumption of infected plants and produce. By sequencing RNA extracted from influent wastewater obtained from eight wastewater treatment plants in Southern California, we assembled high-quality viral genomes and detected thousands of single nucleotide variants from eight tobamoviruses. Our study shows that Tobamovirus genomes vary at many positions, which may have important consequences when designing assays for the detection of these viruses by agricultural or environmental scientists.


Asunto(s)
Tobamovirus , Aguas Residuales , Secuencia de Bases , Genoma Viral , Nucleótidos , ARN , Tobamovirus/genética , Aguas Residuales/virología , California
17.
bioRxiv ; 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35982656

RESUMEN

Municipal wastewater provides a representative sample of human fecal waste across a catchment area and contains a wide diversity of microbes. Sequencing wastewater samples provides information about human-associated and medically-important microbial populations, and may be useful to assay disease prevalence and antimicrobial resistance (AMR). Here, we present a study in which we used untargeted metatranscriptomic sequencing on RNA extracted from 275 sewage influent samples obtained from eight wastewater treatment plants (WTPs) representing approximately 16 million people in Southern California between August 2020 - August 2021. We characterized bacterial and viral transcripts, assessed metabolic pathway activity, and identified over 2,000 AMR genes/variants across all samples. Because we did not deplete ribosomal RNA, we have a unique window into AMR carried as ribosomal mutants. We show that AMR diversity varied between WTPs and that the relative abundance of many individual AMR genes/variants increased over time and may be connected to antibiotic use during the COVID-19 pandemic. Similarly, we detected transcripts mapping to human pathogenic bacteria and viruses suggesting RNA sequencing is a powerful tool for wastewater-based epidemiology and that there are geographical signatures to microbial transcription. We captured the transcription of gene pathways common to bacterial cell processes, including central carbon metabolism, nucleotide synthesis/salvage, and amino acid biosynthesis. We also posit that due to the ubiquity of many viruses and bacteria in wastewater, new biological targets for microbial water quality assessment can be developed. To the best of our knowledge, our study provides the most complete longitudinal metatranscriptomic analysis of a large population's wastewater to date and demonstrates our ability to monitor the presence and activity of microbes in complex samples. By sequencing RNA, we can track the relative abundance of expressed AMR genes/variants and metabolic pathways, increasing our understanding of AMR activity across large human populations and sewer sheds.

18.
PLoS One ; 16(7): e0255463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324610

RESUMEN

Invasive species present a worldwide concern as competition and pathogen reservoirs for native species. Specifically, the invasive social wasp, Vespula pensylvanica, is native to western North America and has become naturalized in Hawaii, where it exerts pressures on native arthropod communities as a competitor and predator. As invasive species may alter the microbial and disease ecology of their introduced ranges, there is a need to understand the microbiomes and virology of social wasps. We used 16S rRNA gene sequencing to characterize the microbiome of V. pensylvanica samples pooled by colony across two geographically distinct ranges and found that wasps generally associate with taxa within the bacterial genera Fructobacillus, Fructilactobacillus, Lactococcus, Leuconostoc, and Zymobacter, and likely associate with environmentally-acquired bacteria. Furthermore, V. pensylvanica harbors-and in some cases were dominated by-many endosymbionts including Wolbachia, Sodalis, Arsenophonus, and Rickettsia, and were found to contain bee-associated taxa, likely due to scavenging on or predation upon honey bees. Next, we used reverse-transcriptase quantitative PCR to assay colony-level infection intensity for Moku virus (family: Iflaviridae), a recently-described disease that is known to infect multiple Hymenopteran species. While Moku virus was prevalent and in high titer, it did not associate with microbial diversity, indicating that the microbiome may not directly interact with Moku virus in V. pensylvanica in meaningful ways. Collectively, our results suggest that the invasive social wasp V. pensylvanica associates with a simple microbiome, may be infected with putative endosymbionts, likely acquires bacterial taxa from the environment and diet, and is often infected with Moku virus. Our results suggest that V. pensylvanica, like other invasive social insects, has the potential to act as a reservoir for bacteria pathogenic to other pollinators, though this requires experimental demonstration.


Asunto(s)
Abejas , ARN Ribosómico 16S , Avispas , Animales , Virus ARN
19.
Insects ; 11(9)2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32962223

RESUMEN

Mounting evidence suggests that microbes found in the pollen provisions of wild and solitary bees are important drivers of larval development. As these microbes are also known to be transmitted via the environment, most likely from flowers, the diet breadth of a bee may affect the diversity and identity of the microbes that occur in its pollen provisions. Here, we tested the hypothesis that, due to the importance of floral transmission of microbes, diet breadth affects pollen provision microbial community composition. We collected pollen provisions at four sites from the polylectic bee Osmia lignaria and the oligolectic bee Osmia ribifloris. We used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacteria found in these provisions. We found minimal overlap in the specific bacterial variants in pollen provisions across the host species, even when the bees were constrained to foraging from the same flowers in cages at one site. Similarly, there was minimal overlap in the specific bacterial variants across sites, even within the same host species. Together, these findings highlight the importance of environmental transmission and host specific sorting influenced by diet breadth for microbes found in pollen provisions. Future studies addressing the functional consequences of this filtering, along with tests for differences between more species of oligoletic and polylectic bees will provide rich insights into the microbial ecology of solitary bees.

20.
Microbiol Resour Announc ; 9(41)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033132

RESUMEN

Sequencing wastewater may be useful for detecting pathogens and assaying microbial water quality. We concentrated, extracted, and sequenced nucleic acids from 17 composite influent wastewater samples spanning seven southern California wastewater treatment facilities in May 2020. Bacteria were the most proportionally abundant taxonomic group present, followed by viruses and archaea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA