Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Semin Cell Dev Biol ; 138: 28-35, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35787974

RESUMEN

The neural crest is a vertebrate-specific embryonic stem cell population that gives rise to a vast array of cell types throughout the animal body plan. These cells are first born at the edges of the central nervous system, from which they migrate extensively and differentiate into multiple cellular derivatives. Given the unique set of structures these cells comprise, the origin of the neural crest is thought to have important implications for the evolution and diversification of the vertebrate clade. In jawed vertebrates, neural crest cells exist as distinct subpopulations along the anterior-posterior axis. These subpopulations differ in terms of their respective differentiation potential and cellular derivatives. Thus, the modern neural crest is characterized as multipotent, migratory, and regionally segregated throughout the embryo. Here, we retrace the evolutionary origins of the neural crest, from the appearance of conserved regulatory circuitry in basal chordates to the emergence of neural crest subpopulations in higher vertebrates. Finally, we discuss a stepwise trajectory by which these cells may have arisen and diversified throughout vertebrate evolution.


Asunto(s)
Evolución Biológica , Cresta Neural , Animales , Vertebrados/genética , Diferenciación Celular/fisiología
2.
Genome Res ; 30(1): 35-48, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31848212

RESUMEN

Cell fate commitment involves the progressive restriction of developmental potential. Recent studies have shown that this process requires not only shifts in gene expression but also an extensive remodeling of the epigenomic landscape. To examine how chromatin states are reorganized during cellular specification in an in vivo system, we examined the function of pioneer factor TFAP2A at discrete stages of neural crest development. Our results show that TFAP2A activates distinct sets of genomic regions during induction of the neural plate border and specification of neural crest cells. Genomic occupancy analysis revealed that the repertoire of TFAP2A targets depends upon its dimerization with paralogous proteins TFAP2C and TFAP2B. During gastrula stages, TFAP2A/C heterodimers activate components of the neural plate border induction program. As neurulation begins, TFAP2A trades partners, and TFAP2A/B heterodimers reorganize the epigenomic landscape of progenitor cells to promote neural crest specification. We propose that this molecular switch acts to drive progressive cell commitment, remodeling the epigenomic landscape to define the presumptive neural crest. Our findings show how pioneer factors regulate distinct genomic targets in a stage-specific manner and highlight how paralogy can serve as an evolutionary strategy to diversify the function of the regulators that control embryonic development.


Asunto(s)
Desarrollo Embrionario/genética , Epigénesis Genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Multimerización de Proteína , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Animales , Diferenciación Celular , Embrión de Pollo , Epigenómica , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Secuencias Reguladoras de Ácidos Nucleicos , Factor de Transcripción AP-2/química
3.
Dev Biol ; 444 Suppl 1: S170-S180, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071217

RESUMEN

The neural crest is a migratory cell population that contributes to multiple tissues and organs during vertebrate embryonic development. It is remarkable in its ability to differentiate into an array of different cell types, including melanocytes, cartilage, bone, smooth muscle, and peripheral nerves. Although neural crest cells are formed along the entire anterior-posterior axis of the developing embryo, they can be divided into distinct subpopulations based on their axial level of origin. These groups of cells, which include the cranial, vagal, trunk, and sacral neural crest, display varied migratory patterns and contribute to multiple derivatives. While these subpopulations have been shown to be mostly plastic and to differentiate according to environmental cues, differences in their intrinsic potentials have also been identified. For instance, the cranial neural crest is unique in its ability to give rise to cartilage and bone. Here, we examine the molecular features that underlie such developmental restrictions and discuss the hypothesis that distinct gene regulatory networks operate in these subpopulations. We also consider how reconstructing the phylogeny of the trunk and cranial neural crest cells impacts our understanding of vertebrate evolution.


Asunto(s)
Cresta Neural/embriología , Cresta Neural/metabolismo , Cresta Neural/fisiología , Animales , Evolución Biológica , Tipificación del Cuerpo/fisiología , Cartílago , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Desarrollo Embrionario , Redes Reguladoras de Genes , Humanos , Melanocitos , Tubo Neural , Neurogénesis , Cráneo , Vertebrados/embriología
4.
Nat Commun ; 15(1): 90, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167340

RESUMEN

Embryonic cells exhibit diverse metabolic states. Recent studies have demonstrated that metabolic reprogramming drives changes in cell identity by affecting gene expression. However, the connection between cellular metabolism and gene expression remains poorly understood. Here we report that glycolysis-regulated histone lactylation couples the metabolic state of embryonic cells with chromatin organization and gene regulatory network (GRN) activation. We found that lactylation marks genomic regions of glycolytic embryonic tissues, like the neural crest (NC) and pre-somitic mesoderm. Histone lactylation occurs in the loci of NC genes as these cells upregulate glycolysis. This process promotes the accessibility of active enhancers and the deployment of the NC GRN. Reducing the deposition of the mark by targeting LDHA/B leads to the downregulation of NC genes and the impairment of cell migration. The deposition of lactyl-CoA on histones at NC enhancers is supported by a mechanism that involves transcription factors SOX9 and YAP/TEAD. These findings define an epigenetic mechanism that integrates cellular metabolism with the GRNs that orchestrate embryonic development.


Asunto(s)
Redes Reguladoras de Genes , Histonas , Histonas/genética , Histonas/metabolismo , Factores de Transcripción/metabolismo , Desarrollo Embrionario/genética , Mesodermo/metabolismo
5.
Cell Rep ; 42(8): 112980, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37573509

RESUMEN

Rodents are taxonomically diverse and have evolved a variety of traits. A mechanistic understanding of such traits has remained elusive, however, largely because genome editing in non-traditional model species remains challenging. Here, using the African striped mouse (Rhabdomys pumilio), we describe TIGER (targeted in vivo genome editing in rodents), a method that relies on a simple intraoviductal injecting technique and uses recombinant adeno-associated viruses (rAAVs) as the sole vehicle to deliver reagents into pregnant females. We demonstrate that TIGER generates knockout and knockin (up to 3 kb) lines with high efficiency. Moreover, we engineer a double-cleaving repair rAAV template and find that it significantly increases knockin frequency and germline transmission rates. Lastly, we show that an oversized double-cleaving rAAV template leads to an insertion of 3.8 kb. Thus, TIGER constitutes an attractive alternative to traditional ex vivo genome-editing methods and has the potential to be extended to a broad range of species.


Asunto(s)
Edición Génica , Animales , Femenino , Ratones , Embarazo , Edición Génica/métodos , Roedores/genética
6.
Dev Cell ; 57(19): 2257-2272.e5, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36182685

RESUMEN

Yamanaka factors are essential for establishing pluripotency in embryonic stem cells, but their function in multipotent stem cell populations is poorly understood. Here, we show that OCT4 and SOX2 cooperate with tissue-specific transcription factors to promote neural crest formation. By assessing avian and human neural crest cells at distinct developmental stages, we characterized the epigenomic changes that occur during their specification, migration, and early differentiation. This analysis determined that the OCT4-SOX2 dimer is required to establish a neural crest epigenomic signature that is lost upon cell fate commitment. The OCT4-SOX2 genomic targets in the neural crest differ from those of embryonic stem cells, indicating the dimer displays context-specific functions. Binding of OCT4-SOX2 to neural crest enhancers requires pioneer factor TFAP2A, which physically interacts with the dimer to modify its genomic targets. Our results demonstrate how Yamanaka factors are repurposed in multipotent cells to control chromatin organization and define their developmental potential.


Asunto(s)
Cresta Neural , Factor 3 de Transcripción de Unión a Octámeros , Diferenciación Celular , Cromatina/metabolismo , Epigenómica , Humanos , Cresta Neural/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo
7.
Elife ; 112022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36111787

RESUMEN

Neuronal identity dictates the position in an epithelium, and the ability to detect, process, and transmit specific signals to specified targets. Transcription factors (TFs) determine cellular identity via direct modulation of genetic transcription and recruiting chromatin modifiers. However, our understanding of the mechanisms that define neuronal identity and their magnitude remain a critical barrier to elucidate the etiology of congenital and neurodegenerative disorders. The rodent vomeronasal organ provides a unique system to examine in detail the molecular mechanisms underlying the differentiation and maturation of chemosensory neurons. Here, we demonstrated that the identity of postmitotic/maturing vomeronasal sensory neurons (VSNs), and vomeronasal-dependent behaviors can be reprogrammed through the rescue of Tfap2e/AP-2ε expression in the Tfap2eNull mice, and partially reprogrammed by inducing ectopic Tfap2e expression in mature apical VSNs. We suggest that the TF Tfap2e can reprogram VSNs bypassing cellular plasticity restrictions, and that it directly controls the expression of batteries of vomeronasal genes.


Asunto(s)
Órgano Vomeronasal , Animales , Cromatina/metabolismo , Ratones , Ratones Noqueados , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo , Órgano Vomeronasal/metabolismo
8.
Wiley Interdiscip Rev Syst Biol Med ; 12(2): e1468, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31702881

RESUMEN

The neural crest is an ectodermal cell population that gives rise to over 30 cell types during vertebrate embryogenesis. These stem cells are formed at the border of the developing central nervous system and undergo extensive migration before differentiating into components of multiple tissues and organs. Neural crest formation and differentiation is a multistep process, as these cells transition through sequential regulatory states before adopting their adult phenotype. Such changes are governed by a complex gene regulatory network (GRN) that integrates environmental and cell-intrinsic inputs to regulate cell identity. Studies of neural crest cells in a variety of vertebrate models have elucidated the function and regulation of dozens of the molecular players that are part of this network. The neural crest GRN has served as a platform to explore the molecular control of multipotency, cell differentiation, and the evolution of vertebrates. In this review, we employ this genetic program as a stepping-stone to explore the architecture and the regulatory principles of developmental GRNs. We also discuss how modern genomic approaches can further expand our understanding of genetic networks in this system and others. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates Developmental Biology > Lineages Models of Systems Properties and Processes > Cellular Models.


Asunto(s)
Redes Reguladoras de Genes , Cresta Neural/metabolismo , Animales , Evolución Biológica , Diferenciación Celular , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Cresta Neural/crecimiento & desarrollo , Transducción de Señal
9.
Elife ; 72018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30520734

RESUMEN

A crucial step in cell differentiation is the silencing of developmental programs underlying multipotency. While much is known about how lineage-specific genes are activated to generate distinct cell types, the mechanisms driving suppression of stemness are far less understood. To address this, we examined the regulation of the transcriptional network that maintains progenitor identity in avian neural crest cells. Our results show that a regulatory circuit formed by Wnt, Lin28a and let-7 miRNAs controls the deployment and the subsequent silencing of the multipotency program in a position-dependent manner. Transition from multipotency to differentiation is determined by the topological relationship between the migratory cells and the dorsal neural tube, which acts as a Wnt-producing stem cell niche. Our findings highlight a mechanism that rapidly silences complex regulatory programs, and elucidate how transcriptional networks respond to positional information during cell differentiation.


Asunto(s)
Proteínas Aviares/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Cresta Neural/metabolismo , Neuronas/metabolismo , Proteínas Wnt/genética , Dedos de Zinc/genética , Animales , Proteínas Aviares/metabolismo , Diferenciación Celular , Movimiento Celular , Embrión de Pollo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , MicroARNs/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Cresta Neural/citología , Cresta Neural/crecimiento & desarrollo , Neuronas/citología , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Transcripción Genética , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
10.
Sci Rep ; 6: 25181, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27121904

RESUMEN

Human pluripotent stem cells provide a powerful human-genome based system for modeling human diseases in vitro and for potentially identifying novel treatments. Directed differentiation of pluripotent stem cells produces many specific cell types including dopaminergic neurons. Here, we generated a genetic reporter assay in pluripotent stem cells using newly-developed genome editing technologies in order to monitor differentiation efficiency and compare dopaminergic neuron survival under different conditions. We show that insertion of a luciferase reporter gene into the endogenous tyrosine hydroxylase (TH) locus enables rapid and easy quantification of dopaminergic neurons in cell culture throughout the entire differentiation process. Moreover, we demonstrate that the cellular assay is effective in assessing neuron response to different cytotoxic chemicals and is able to be scaled for high throughput applications. These results suggest that stem cell-derived terminal cell types can provide an alternative to traditional immortal cell lines or primary cells as a quantitative cellular model for toxin evaluation and drug discovery.


Asunto(s)
Diferenciación Celular , Técnicas Citológicas/métodos , Citotoxinas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Células Madre Pluripotentes/fisiología , Células Cultivadas , Edición Génica , Genes Reporteros , Sitios Genéticos , Ensayos Analíticos de Alto Rendimiento , Humanos , Luciferasas/análisis , Luciferasas/genética
11.
Sci Rep ; 6: 20270, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26842779

RESUMEN

Generation of induced dopaminergic (iDA) neurons may provide a significant step forward towards cell replacement therapy for Parkinson's disease (PD). To study and compare transcriptional programs of induced cells versus primary DA neurons is a preliminary step towards characterizing human iDA neurons. We have optimized a protocol to efficiently generate iDA neurons from human pluripotent stem cells (hPSCs). We then sequenced the transcriptomes of iDA neurons derived from 6 different hPSC lines and compared them to that of primary midbrain (mDA) neurons. We identified a small subset of genes with altered expression in derived iDA neurons from patients with Parkinson's Disease (PD). We also observed that iDA neurons differ significantly from primary mDA neurons in global gene expression, especially in genes related to neuron maturation level. Results suggest iDA neurons from patient iPSCs could be useful for basic and translational studies, including in vitro modeling of PD. However, further refinement of methods of induction and maturation of neurons may better recapitulate full development of mDA neurons from hPSCs.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mesencéfalo/citología , Transcriptoma , Diferenciación Celular , Células Cultivadas , Neuronas Dopaminérgicas/citología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Metaboloma , Nestina/genética , Nestina/metabolismo , Neurogénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , ARN Mensajero/química , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA