Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062808

RESUMEN

The melanocortin-4 receptor (MC4R) is a key player in the hypothalamic leptin-melanocortin pathway that regulates satiety and hunger. MC4R belongs to the G protein-coupled receptors (GPCRs), which are known to form heterodimers with other membrane proteins, potentially modulating receptor function or characteristics. Like MC4R, thyroid hormones (TH) are also essential for energy homeostasis control. TH transport across membranes is facilitated by the monocarboxylate transporter 8 (MCT8), which is also known to form heterodimers with GPCRs. Based on the finding in single-cell RNA-sequencing data that both proteins are simultaneously expressed in hypothalamic neurons, we investigated a putative interplay between MC4R and MCT8. We developed a novel staining protocol utilizing a fluorophore-labeled MC4R ligand and demonstrated a co-localization of MC4R and MCT8 in human brain tissue. Using in vitro assays such as BRET, IP1, and cAMP determination, we found that MCT8 modulates MC4R-mediated phospholipase C activation but not cAMP formation via a direct interaction, an effect that does not require a functional MCT8 as it was not altered by a specific MCT8 inhibitor. This suggests an extended functional spectrum of MCT8 as a GPCR signaling modulator and argues for the investigation of further GPCR-protein interactions with hitherto underrepresented physiological functions.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos , Receptor de Melanocortina Tipo 4 , Fosfolipasas de Tipo C , Humanos , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 4/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Fosfolipasas de Tipo C/metabolismo , Células HEK293 , Transducción de Señal , AMP Cíclico/metabolismo , Simportadores/metabolismo , Simportadores/genética , Unión Proteica , Animales
2.
J Alzheimers Dis ; 85(4): 1701-1720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34958037

RESUMEN

BACKGROUND: Neuritic plaques contain neural and microglial elements, and amyloid-ß protein (Aß), but their pathogenesis remains unknown. OBJECTIVE: Elucidate neuritic plaque pathogenesis. METHODS: Histochemical visualization of hyperphosphorylated-tau positive (p-tau+) structures, microglia, Aß, and iron. RESULTS: Disintegration of large projection neurons in human hippocampus and neocortex presents as droplet degeneration: pretangle neurons break up into spheres of numerous p-tau+ droplets of various sizes, which marks the beginning of neuritic plaques. These droplet spheres develop in the absence of colocalized Aß deposits but once formed become encased in diffuse Aß with great specificity. In contrast, neurofibrillary tangles often do not colocalize with Aß. Double-labelling for p-tau and microglia showed a lack of microglial activation or phagocytosis of p-tau+ degeneration droplets but revealed massive upregulation of ferritin in microglia suggesting presence of high levels of free iron. Perl's Prussian blue produced positive staining of microglia, droplet spheres, and Aß plaque cores supporting the suggestion that droplet degeneration of pretangle neurons in the hippocampus and cortex represents ferroptosis, which is accompanied by the release of neuronal iron extracellularly. CONCLUSION: Age-related iron accumulation and ferroptosis in the CNS likely trigger at least two endogenous mechanisms of neuroprotective iron sequestration and chelation, microglial ferritin expression and Aß deposition, respectively, both contributing to the formation of neuritic plaques. Since neurofibrillary tangles and Aß deposits colocalize infrequently, tangle formation likely does not involve release of neuronal iron extracellularly. In human brain, targeted deposition of Aß occurs specifically in response to ongoing ferroptotic droplet degeneration thereby producing neuritic plaques.


Asunto(s)
Hipocampo/patología , Microglía/patología , Neuronas/patología , Placa Amiloide/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Autopsia , Encéfalo/patología , Femenino , Humanos , Inmunohistoquímica , Masculino , Neocórtex/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA