Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(9): 1895-1899, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37610207

RESUMEN

Genomic characterization of an Escherichia coli O157:H7 strain linked to leafy greens-associated outbreaks dates its emergence to late 2015. One clade has notable accessory genomic content and a previously described mutation putatively associated with increased arsenic tolerance. This strain is a reoccurring, emerging, or persistent strain causing illness over an extended period.


Asunto(s)
Escherichia coli O157 , Escherichia coli O157/genética , Brotes de Enfermedades , Genómica , Mutación
2.
J Infect Dis ; 226(9): 1588-1592, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429402

RESUMEN

Breakthrough gastrointestinal COVID-19 was observed after experimental SARS-CoV-2 upper mucosal infection in a rhesus macaque undergoing low-dose monoclonal antibody prophylaxis. High levels of viral RNA were detected in intestinal sites contrasting with minimal viral replication in upper respiratory mucosa. Sequencing of virus recovered from tissue in 3 gastrointestinal sites and rectal swab revealed loss of furin cleavage site deletions present in the inoculating virus stock and 2 amino acid changes in spike that were detected in 2 colon sites but not elsewhere, suggesting compartmentalized replication and intestinal viral evolution. This suggests suboptimal antiviral therapies promote viral sequestration in these anatomies.


Asunto(s)
COVID-19 , Animales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Monoclonales , Macaca mulatta
3.
Clin Infect Dis ; 72(3): 414-420, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255490

RESUMEN

BACKGROUND: Antibiotic resistance is often spread through bacterial populations via conjugative plasmids. However, plasmid transfer is not well recognized in clinical settings because of technical limitations, and health care-associated infections are usually caused by clonal transmission of a single pathogen. In 2015, multiple species of carbapenem-resistant Enterobacteriaceae (CRE), all producing a rare carbapenemase, were identified among patients in an intensive care unit. This observation suggested a large, previously unrecognized plasmid transmission chain and prompted our investigation. METHODS: Electronic medical record reviews, infection control observations, and environmental sampling completed the epidemiologic outbreak investigation. A laboratory analysis, conducted on patient and environmental isolates, included long-read whole-genome sequencing to fully elucidate plasmid DNA structures. Bioinformatics analyses were applied to infer plasmid transmission chains and results were subsequently confirmed using plasmid conjugation experiments. RESULTS: We identified 14 Verona integron-encoded metallo-ß-lactamase (VIM)-producing CRE in 12 patients, and 1 additional isolate was obtained from a patient room sink drain. Whole-genome sequencing identified the horizontal transfer of blaVIM-1, a rare carbapenem resistance mechanism in the United States, via a promiscuous incompatibility group A/C2 plasmid that spread among 5 bacterial species isolated from patients and the environment. CONCLUSIONS: This investigation represents the largest known outbreak of VIM-producing CRE in the United States to date, which comprises numerous bacterial species and strains. We present evidence of in-hospital plasmid transmission, as well as environmental contamination. Our findings demonstrate the potential for 2 types of hospital-acquired infection outbreaks: those due to clonal expansion and those due to the spread of conjugative plasmids encoding antibiotic resistance across species.


Asunto(s)
Infección Hospitalaria , Integrones , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Infección Hospitalaria/epidemiología , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-34214027

RESUMEN

A previously unrecognized Rickettsia species was isolated in 1976 from a pool of Ixodes pacificus ticks collected in 1967 from Tillamook County, Oregon, USA. The isolate produced low fever and mild scrotal oedema following intraperitoneal injection into male guinea pigs (Cavia porcellus). Subsequent serotyping characterized this isolate as distinct from recognized typhus and spotted fever group Rickettsia species; nonetheless, the isolate remained unevaluated by molecular techniques and was not identified to species level for the subsequent 30 years. Ixodes pacificus is the most frequently identified human-biting tick in the western United States, and as such, formal identification and characterization of this potentially pathogenic Rickettsia species is warranted. Whole-genome sequencing of the Tillamook isolate revealed a genome 1.43 Mbp in size with 32.4 mol% G+C content. Maximum-likelihood phylogeny of core proteins places it in the transitional group of Rickettsia basal to both Rickettsia felis and Rickettsia asembonensis. It is distinct from existing named species, with maximum average nucleotide identity of 95.1% to R. asembonensis and maximum digital DNA-DNA hybridization score similarity to R. felis at 80.1%. The closest similarity at the 16S rRNA gene (97.9%) and sca4 (97.5%/97.6% respectively) is to Candidatus 'Rickettsia senegalensis' and Rickettsia sp. cf9, both isolated from cat fleas (Ctenocephalides felis). We characterized growth at various temperatures and in multiple cell lines. The Tillamook isolate grows aerobically in Vero E6, RF/6A and DH82 cells, and growth is rapid at 28 °C and 32 °C. Using accepted genomic criteria, we propose the name Rickettsia tillamookensis sp. nov., with the type strain Tillamook 23. Strain Tillamook 23 is available from the Centers for Disease Control and Prevention Rickettsial Isolate Reference Collection (WDCM 1093), Atlanta, GA, USA (CRIRC accession number RTI001T) and the Collection de Souches de l'Unité des Rickettsies (WDCM 875), Marseille, France (CSUR accession number R5043). Using accepted genomic criteria, we propose the name Rickettsia tillamookensis sp. nov., with the type strain Tillamook 23 (=CRIRC RTI001=R5043).


Asunto(s)
Ixodes/microbiología , Filogenia , Rickettsia/clasificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Cobayas , Masculino , Oregon , ARN Ribosómico 16S/genética , Rickettsia/aislamiento & purificación , Análisis de Secuencia de ADN
5.
Int J Syst Evol Microbiol ; 70(8): 4432-4450, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32735208

RESUMEN

The genus Chryseobacterium in the family Weeksellaceae is known to be polyphyletic. Amino acid identity (AAI) values were calculated from whole-genome sequences of species of the genus Chryseobacterium, and their distribution was found to be multi-modal. These naturally-occurring non-continuities were leveraged to standardise genus assignment of these species. We speculate that this multi-modal distribution is a consequence of loss of biodiversity during major extinction events, leading to the concept that a bacterial genus corresponds to a set of species that diversified since the Permian extinction. Transfer of nine species (Chryseobacterium arachidiradicis, Chryseobacterium bovis, Chryseobacterium caeni, Chryseobacterium hispanicum, Chryseobacterium hominis, Chryseobacterium hungaricum,, Chryseobacterium pallidum and Chryseobacterium zeae) to the genus Epilithonimonas and eleven (Chryseobacterium anthropi, Chryseobacterium antarcticum, Chryseobacterium carnis, Chryseobacterium chaponense, Chryseobacterium haifense, Chryseobacterium jeonii, Chryseobacterium montanum, Chryseobacterium palustre, Chryseobacterium solincola, Chryseobacterium treverense and Chryseobacterium yonginense) to the genus Kaistella is proposed. Two novel species are described: Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. Evidence is presented to support the assignment of Planobacterium taklimakanense to a genus apart from Chryseobacterium, to which Planobacterium salipaludis comb nov. also belongs. The novel genus Halpernia is proposed, to contain the type species Halpernia frigidisoli comb. nov., along with Halpernia humi comb. nov., and Halpernia marina comb. nov.


Asunto(s)
Chryseobacterium/clasificación , Filogenia , Aminoácidos/química , Extinción Biológica
6.
Artículo en Inglés | MEDLINE | ID: mdl-30745393

RESUMEN

Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to Escherichia coli; plasmids were stable in conjugants after multiple passages on nonselective media. mcr-1 was located on an IncX4 (n = 3) or IncN (n = 1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate that the mcr-1-bearing plasmids in this study were highly transferable in vitro and stable in the recipients.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plásmidos/genética , Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos
7.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358336

RESUMEN

Despite high vaccine coverage, pertussis cases in the United States have increased over the last decade. Growing evidence suggests that disease resurgence results, in part, from genetic divergence of circulating strain populations away from vaccine references. The United States employs acellular vaccines exclusively, and current Bordetella pertussis isolates are predominantly deficient in at least one immunogen, pertactin (Prn). First detected in the United States retrospectively in a 1994 isolate, the rapid spread of Prn deficiency is likely vaccine driven, raising concerns about whether other acellular vaccine immunogens experience similar pressures, as further antigenic changes could potentially threaten vaccine efficacy. We developed an electrochemiluminescent antibody capture assay to monitor the production of the acellular vaccine immunogen filamentous hemagglutinin (Fha). Screening 722 U.S. surveillance isolates collected from 2010 to 2016 identified two that were both Prn and Fha deficient. Three additional Fha-deficient laboratory strains were also identified from a historic collection of 65 isolates dating back to 1935. Whole-genome sequencing of deficient isolates revealed putative, underlying genetic changes. Only four isolates harbored mutations to known genes involved in Fha production, highlighting the complexity of its regulation. The chromosomes of two Fha-deficient isolates included unexpected structural variation that did not appear to influence Fha production. Furthermore, insertion sequence disruption of fhaB was also detected in a previously identified pertussis toxin-deficient isolate that still produced normal levels of Fha. These results demonstrate the genetic potential for additional vaccine immunogen deficiency and underscore the importance of continued surveillance of circulating B. pertussis evolution in response to vaccine pressure.


Asunto(s)
Adhesinas Bacterianas/genética , Bordetella pertussis/genética , Bordetella pertussis/inmunología , Genoma Bacteriano , Genómica , Factores de Virulencia de Bordetella/genética , Adhesinas Bacterianas/biosíntesis , Duplicación de Gen , Genómica/métodos , Humanos , Mutación , Filogenia , Polimorfismo de Nucleótido Simple , Eliminación de Secuencia , Factores de Virulencia de Bordetella/biosíntesis , Secuenciación Completa del Genoma , Tos Ferina/inmunología , Tos Ferina/microbiología
8.
Emerg Infect Dis ; 24(4): 700-709, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553324

RESUMEN

Oxacillinase (OXA)-48-like carbapenemases remain relatively uncommon in the United States. We performed phenotypic and genotypic characterization of 30 Enterobacteriaceae producing OXA-48-like carbapenemases that were recovered from patients during 2010-2014. Isolates were collected from 12 states and not associated with outbreaks, although we could not exclude limited local transmission. The alleles ß-lactamase OXA-181 (blaOXA-181) (43%), blaOXA-232 (33%), and blaOXA-48 (23%) were found. All isolates were resistant to ertapenem and showed positive results for the ertapenem and meropenem modified Hodge test and the modified carbapenem inactivation method; 73% showed a positive result for the Carba Nordmann-Poirel test. Whole-genome sequencing identified extended-spectrum ß-lactamase genes in 93% of isolates. In all blaOXA-232 isolates, the gene was on a ColKP3 plasmid. A total of 12 of 13 isolates harboring blaOXA-181 contained the insertion sequence ΔISEcp1. In all isolates with blaOXA-48, the gene was located on a TN1999 transposon; these isolates also carried IncL/M plasmids.

10.
Emerg Infect Dis ; 23(7): 1133-1138, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28628442

RESUMEN

The bacterium Burkholderia pseudomallei causes melioidosis, which is mainly associated with tropical areas. We analyzed single-nucleotide polymorphisms (SNPs) among genome sequences from isolates of B. pseudomallei that originated in the Western Hemisphere by comparing them with genome sequences of isolates that originated in the Eastern Hemisphere. Analysis indicated that isolates from the Western Hemisphere form a distinct clade, which supports the hypothesis that these isolates were derived from a constricted seeding event from Africa. Subclades have been resolved that are associated with specific regions within the Western Hemisphere and suggest that isolates might be correlated geographically with cases of melioidosis. One isolate associated with a former World War II prisoner of war was believed to represent illness 62 years after exposure in Southeast Asia. However, analysis suggested the isolate originated in Central or South America.


Asunto(s)
Burkholderia pseudomallei/clasificación , Burkholderia pseudomallei/genética , Melioidosis/epidemiología , Melioidosis/microbiología , Filogenia , Filogeografía , Burkholderia pseudomallei/aislamiento & purificación , Genoma Bacteriano , Genómica/métodos , Salud Global , Humanos , Tipificación de Secuencias Multilocus , Polimorfismo de Nucleótido Simple
11.
J Med Virol ; 89(3): 542-545, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27486688

RESUMEN

The spike glycoprotein of the Middle East respiratory coronavirus (MERS-CoV) facilitates receptor binding and cell entry. During investigation of a multi-facility outbreak of MERS-CoV in Taif, Saudi Arabia, we identified a mixed population of wild-type and variant sequences with a large 530 nucleotide deletion in the spike gene from the serum of one patient. The out of frame deletion predicted loss of most of the S2 subunit of the spike protein leaving the S1 subunit with an intact receptor binding domain. This finding documents human infection with a novel genetic variant of MERS-CoV present as a quasispecies. J. Med. Virol. 89:542-545, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Infecciones por Coronavirus/virología , Variación Genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Eliminación de Secuencia , Suero/virología , Glicoproteína de la Espiga del Coronavirus/genética , Infecciones por Coronavirus/epidemiología , Brotes de Enfermedades , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Arabia Saudita/epidemiología
12.
BMC Genomics ; 16: 320, 2015 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-25903370

RESUMEN

BACKGROUND: Cryptosporidium hominis is a dominant species for human cryptosporidiosis. Within the species, IbA10G2 is the most virulent subtype responsible for all C. hominis-associated outbreaks in Europe and Australia, and is a dominant outbreak subtype in the United States. In recent yearsIaA28R4 is becoming a major new subtype in the United States. In this study, we sequenced the genomes of two field specimens from each of the two subtypes and conducted a comparative genomic analysis of the obtained sequences with those from the only fully sequenced Cryptosporidium parvum genome. RESULTS: Altogether, 8.59-9.05 Mb of Cryptosporidium sequences in 45-767 assembled contigs were obtained from the four specimens, representing 94.36-99.47% coverage of the expected genome. These genomes had complete synteny in gene organization and 96.86-97.0% and 99.72-99.83% nucleotide sequence similarities to the published genomes of C. parvum and C. hominis, respectively. Several major insertions and deletions were seen between C. hominis and C. parvum genomes, involving mostly members of multicopy gene families near telomeres. The four C. hominis genomes were highly similar to each other and divergent from the reference IaA25R3 genome in some highly polymorphic regions. Major sequence differences among the four specimens sequenced in this study were in the 5' and 3' ends of chromosome 6 and the gp60 region, largely the result of genetic recombination. CONCLUSIONS: The sequence similarity among specimens of the two dominant outbreak subtypes and genetic recombination in chromosome 6, especially around the putative virulence determinant gp60 region, suggest that genetic recombination plays a potential role in the emergence of hyper-transmissible C. hominis subtypes. The high sequence conservation between C. parvum and C. hominis genomes and significant differences in copy numbers of MEDLE family secreted proteins and insulinase-like proteases indicate that telomeric gene duplications could potentially contribute to host expansion in C. parvum.


Asunto(s)
Cryptosporidium parvum/genética , Cryptosporidium/genética , Genoma , Recombinación Genética/genética , Telómero/genética , Hibridación Genómica Comparativa , Mapeo Contig , Criptosporidiosis/parasitología , Criptosporidiosis/patología , Cryptosporidium/crecimiento & desarrollo , Cryptosporidium/patogenicidad , Cryptosporidium parvum/crecimiento & desarrollo , Cryptosporidium parvum/patogenicidad , ADN Protozoario/análisis , ADN Protozoario/aislamiento & purificación , ADN Protozoario/metabolismo , Cara/parasitología , Duplicación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Oocistos/metabolismo , Análisis de Secuencia de ADN , Virulencia/genética
13.
Proc Natl Acad Sci U S A ; 109(11): 4269-74, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371588

RESUMEN

Influenza A virus reservoirs in animals have provided novel genetic elements leading to the emergence of global pandemics in humans. Most influenza A viruses circulate in waterfowl, but those that infect mammalian hosts are thought to pose the greatest risk for zoonotic spread to humans and the generation of pandemic or panzootic viruses. We have identified an influenza A virus from little yellow-shouldered bats captured at two locations in Guatemala. It is significantly divergent from known influenza A viruses. The HA of the bat virus was estimated to have diverged at roughly the same time as the known subtypes of HA and was designated as H17. The neuraminidase (NA) gene is highly divergent from all known influenza NAs, and the internal genes from the bat virus diverged from those of known influenza A viruses before the estimated divergence of the known influenza A internal gene lineages. Attempts to propagate this virus in cell cultures and chicken embryos were unsuccessful, suggesting distinct requirements compared with known influenza viruses. Despite its divergence from known influenza A viruses, the bat virus is compatible for genetic exchange with human influenza viruses in human cells, suggesting the potential capability for reassortment and contributions to new pandemic or panzootic influenza A viruses.


Asunto(s)
Quirópteros/virología , Virus de la Influenza A/genética , Filogenia , Animales , ARN Polimerasas Dirigidas por ADN/metabolismo , Genes Reporteros/genética , Genoma Viral/genética , Geografía , Guatemala , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Datos de Secuencia Molecular , Neuraminidasa/química , Neuraminidasa/genética , Análisis de Secuencia de ADN
14.
Microbiol Resour Announc ; : e0112823, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809010

RESUMEN

Ten Clostridioides difficile isolates representing the top 10 ribotypes collected in 2016 through the Emerging Infections Program underwent long-read sequencing to obtain high-quality reference genome assemblies. These isolates are publicly available through the CDC & FDA Antibiotic Resistance Isolate Bank.

15.
Viruses ; 15(9)2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37766343

RESUMEN

The ability of each new SARS-CoV-2 variant to evade host humoral immunity is the focus of intense research. Each variant may also harbor unique replication capabilities relevant for disease and transmission. Here, we demonstrate a new approach to assessing viral replication kinetics using real-time cell analysis (RTCA). Virus-induced cell death is measured in real time as changes in electrical impedance through cell monolayers while images are acquired at defined intervals via an onboard microscope and camera. Using this system, we quantified replication kinetics of five clinically important viral variants: WA1/2020 (ancestral), Delta, and Omicron subvariants BA.1, BA.4, and BA.5. Multiple measures proved useful in variant replication comparisons, including the elapsed time to, and the slope at, the maximum rate of cell death. Important findings include significantly weaker replication kinetics of BA.1 by all measures, while BA.5 harbored replication kinetics at or near ancestral levels, suggesting evolution to regain replicative capacity, and both an altered profile of cell killing and enhanced fusogenicity of the Delta variant. Together, these data show that RTCA is a robust method to assess replicative capacity of any given SARS-CoV-2 variant rapidly and quantitatively, which may be useful in assessment of newly emerging variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Muerte Celular , Apoptosis
16.
Sci Rep ; 13(1): 21510, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057343

RESUMEN

Group A streptococcal strains potentially acquire new M protein gene types through genetic recombination (emm switching). To detect such variants, we screened 12,596 invasive GAS genomes for strains of differing emm types that shared the same multilocus sequence type (ST). Through this screening we detected a variant consisting of 16 serum opacity factor (SOF)-positive, emm pattern E, emm82 isolates that were ST36, previously only associated with SOF-negative, emm pattern A, emm12. The 16 emm82/ST36 isolates were closely interrelated (pairwise SNP distance of 0-43), and shared the same emm82-containing recombinational fragment. emm82/ST36 isolates carried the sof12 structural gene, however the sof12 indel characteristic of emm12 strains was corrected to confer the SOF-positive phenotype. Five independent emm82/ST36 invasive case isolates comprised two sets of genetically indistinguishable strains. The emm82/ST36 isolates were primarily macrolide resistant (12/16 isolates), displayed at least 4 different core genomic arrangements, and carried 11 different combinations of virulence and resistance determinants. Phylogenetic analysis revealed that emm82/ST36 was within a minor (non-clade 1) portion of ST36 that featured almost all ST36 antibiotic resistance. This work documents emergence of a rapidly diversifying variant that is the first confirmed example of an emm pattern A strain switched to a pattern E strain.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus pyogenes , Humanos , Infecciones Estreptocócicas/tratamiento farmacológico , Filogenia , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Genómica , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Genotipo
17.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014096

RESUMEN

Persistent and uncontrolled SARS-CoV-2 replication in immunocompromised individuals has been observed and may be a contributing source of novel viral variants that continue to drive the pandemic. Importantly, the effects of immunodeficiency associated with chronic HIV infection on COVID-19 disease and viral persistence have not been directly addressed in a controlled setting. Here we conducted a pilot study wherein two pigtail macaques (PTM) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and monitored for six weeks for clinical disease, viral replication, and viral evolution, and compared to our previously published cohort of SIV-naïve PTM infected with SARS-CoV-2. At the time of SARS-CoV-2 infection, one PTM had minimal to no detectable CD4+ T cells in gut, blood, or bronchoalveolar lavage (BAL), while the other PTM harbored a small population of CD4+ T cells in all compartments. Clinical signs were not observed in either PTM; however, the more immunocompromised PTM exhibited a progressive increase in pulmonary infiltrating monocytes throughout SARS-CoV-2 infection. Single-cell RNA sequencing (scRNAseq) of the infiltrating monocytes revealed a less activated/inert phenotype. Neither SIV-infected PTM mounted detectable anti-SARS-CoV-2 T cell responses in blood or BAL, nor anti-SARS-CoV-2 neutralizing antibodies. Interestingly, despite the diminished cellular and humoral immune responses, SARS-CoV-2 viral kinetics and evolution were indistinguishable from SIV-naïve PTM in all sampled mucosal sites (nasal, oral, and rectal), with clearance of virus by 3-4 weeks post infection. SIV-induced immunodeficiency significantly impacted immune responses to SARS-CoV-2 but did not alter disease progression, viral kinetics or evolution in the PTM model. SIV-induced immunodeficiency alone may not be sufficient to drive the emergence of novel viral variants.

18.
Exp Appl Acarol ; 58(3): 291-300, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22678102

RESUMEN

We used next generation sequencing to detect the bacterium "Candidatus Midichloria mitochondrii" for the first time in lone star ticks (Amblyomma americanum) from the eastern United States. 177 individuals and 11 tick pools from seven sites in four states were tested by pyrosequencing with barcoded 16S rRNA gene eubacterial primers targeting variable regions 5-3. Average infection prevalence was 0.15 across all surveyed populations (range 0-0.29) and only the site with the smallest sample size (n = 5) was negative. Three genotypes differing by 2.6-4.1 % in a 271 bp region of 16S rRNA gene were identified. Two variants co-occurred in sites in North Carolina and New York, but were not observed in the same tick at those sites. The third genotype was found only in Georgia. Phylogenetic analysis of this fragment indicated that the three variants are more closely related to "Candidatus Midichloria mitochondrii" genotypes from other tick species than to each other. This variation suggests that multiple independent introductions occurred in A. americanum which may provide insight into bacterial spread within its ecosystem and parasitism on this tick. Whether the presence of this bacterium affects acquisition or maintenance of other pathogens and symbionts in A. americanum or the survival, biology and evolution of the tick itself is unknown.


Asunto(s)
Alphaproteobacteria/genética , Variación Genética , Ixodidae/microbiología , Mitocondrias/genética , Alphaproteobacteria/ultraestructura , Animales , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
19.
Viruses ; 14(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35062281

RESUMEN

In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Evolución Molecular , Mutación , Poliproteínas/genética , ARN Viral/genética , Recto/virología , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Proteínas Virales/genética
20.
Microbiol Resour Announc ; 11(12): e0072322, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36445150

RESUMEN

This report describes genome sequences for nine Listeria innocua strains that varied in hemolytic phenotypes on sheep blood agar. All strains were sequenced using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) chemistry; overall, the average read length of these sequences was 2,869,880 bp, with an average GC content of 37%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA