RESUMEN
CD28 and CTLA-4 (CD152) play essential roles in regulating T cell immunity, balancing the activation and inhibition of T cell responses, respectively. Although both receptors share the same ligands, CD80 and CD86, the specific requirement for two distinct ligands remains obscure. In the present study, we demonstrate that, although CTLA-4 targets both CD80 and CD86 for destruction via transendocytosis, this process results in separate fates for CTLA-4 itself. In the presence of CD80, CTLA-4 remained ligand bound, and was ubiquitylated and trafficked via late endosomes and lysosomes. In contrast, in the presence of CD86, CTLA-4 detached in a pH-dependent manner and recycled back to the cell surface to permit further transendocytosis. Furthermore, we identified clinically relevant mutations that cause autoimmune disease, which selectively disrupted CD86 transendocytosis, by affecting either CTLA-4 recycling or CD86 binding. These observations provide a rationale for two distinct ligands and show that defects in CTLA-4-mediated transendocytosis of CD86 are associated with autoimmunity.
Asunto(s)
Antígenos CD , Antígenos CD28 , Antígenos CD/metabolismo , Antígenos de Diferenciación/metabolismo , Antígeno B7-1 , Antígeno B7-2/genética , Antígenos CD28/metabolismo , Antígeno CTLA-4/genética , Moléculas de Adhesión Celular , Ligandos , Activación de LinfocitosRESUMEN
CTLA-4 is an essential regulator of T-cell immune responses whose intracellular trafficking is a hallmark of its expression. Defects in CTLA-4 trafficking due to LRBA deficiency cause profound autoimmunity in humans. CTLA-4 rapidly internalizes via a clathrin-dependent pathway followed by poorly characterized recycling and degradation fates. Here, we explore the impact of manipulating Rab GTPases and LRBA on CTLA-4 expression to determine how these proteins affect CTLA-4 trafficking. We observe that CTLA-4 is distributed across several compartments marked by Rab5, Rab7 and Rab11 in both HeLa and Jurkat cells. Dominant negative (DN) inhibition of Rab5 resulted in increased surface CTLA-4 expression and reduced internalization and degradation. We also observed that constitutively active (CA) Rab11 increased, whereas DN Rab11 decreased CTLA-4 surface expression via an impact on CTLA-4 recycling, indicating CTLA-4 shares similarities with other recycling receptors such as EGFR. Additionally, we studied the impact of manipulating both LRBA and Rab11 on CTLA-4 trafficking. In Jurkat cells, LRBA deficiency was associated with markedly impaired CTLA-4 recycling and increased degradation that could not be corrected by expressing CA Rab11. Moreover LRBA deficiency reduced CTLA-4 colocalization with Rab11, suggesting that LRBA is upstream of Rab11. These results show that LRBA is required for effective CTLA-4 recycling by delivering CTLA-4 to Rab11 recycling compartments, and in its absence, CTLA-4 fails to recycle and undergoes degradation.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígeno CTLA-4/metabolismo , Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Autoinmunidad , Clatrina/metabolismo , Células HeLa , Humanos , Células Jurkat , Ratones , Transporte de Proteínas , Proteolisis , Transducción de Señal , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab5/genéticaRESUMEN
CD28 and CTLA-4 are members of a family of immunoglobulin-related receptors that are responsible for various aspects of T-cell immune regulation. The family includes CD28, CTLA-4, and ICOS as well as other proteins, including PD-1, BTLA, and TIGIT. These receptors have both stimulatory (CD28, ICOS) and inhibitory roles (CTLA-4, PD-1, BTLA, and TIGIT) in T-cell function. Increasingly, these pathways are targeted as part of immune modulatory strategies to treat cancers, referred to generically as immune checkpoint blockade, and conversely to treat autoimmunity and CTLA-4 deficiency. Here, we focus on the biology of the CD28/CTLA-4 pathway as a framework for understanding the impacts of therapeutic manipulation of this pathway.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígeno CTLA-4/antagonistas & inhibidores , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Animales , Antígeno CTLA-4/inmunología , HumanosRESUMEN
Heterozygous CTLA-4 deficiency has been reported as a monogenic cause of common variable immune deficiency with features of immune dysregulation. Direct mutation in CTLA-4 leads to defective regulatory T-cell (Treg) function associated with impaired ability to control levels of the CTLA-4 ligands, CD80 and CD86. However, additional mutations affecting the CTLA-4 pathway, such as those recently reported for LRBA, indirectly affect CTLA-4 expression, resulting in clinically similar disorders. Robust phenotyping approaches sensitive to defects in the CTLA-4 pathway are therefore required to inform understanding of such immune dysregulation syndromes. Here, we describe assays capable of distinguishing a variety of defects in the CTLA-4 pathway. Assessing total CTLA-4 expression levels was found to be optimal when restricting analysis to the CD45RA-Foxp3+ fraction. CTLA-4 induction following stimulation, and the use of lysosomal-blocking compounds, distinguished CTLA-4 from LRBA mutations. Short-term T-cell stimulation improved the capacity for discriminating the Foxp3+ Treg compartment, clearly revealing Treg expansions in these disorders. Finally, we developed a functionally orientated assay to measure ligand uptake by CTLA-4, which is sensitive to ligand-binding or -trafficking mutations, that would otherwise be difficult to detect and that is appropriate for testing novel mutations in CTLA-4 pathway genes. These approaches are likely to be of value in interpreting the functional significance of mutations in the CTLA-4 pathway identified by gene-sequencing approaches.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Antígeno CTLA-4/genética , Mutación , Antígeno CTLA-4/metabolismo , Línea Celular , Inmunodeficiencia Variable Común/genética , Factores de Transcripción Forkhead/análisis , Humanos , Fenómenos del Sistema Inmunológico/genética , Ligandos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patologíaRESUMEN
CTLA4 is an essential negative regulator of T-cell immune responses and a key checkpoint regulating autoimmunity and antitumor responses. Genetic mutations resulting in quantitative defects in the CTLA4 pathway are also associated with the development of immune dysregulation syndromes in humans. It has been proposed that CTLA4 functions to remove its ligands CD80 and CD86 from opposing cells by a process known as transendocytosis. A quantitative characterization of CTLA4 synthesis, endocytosis, degradation, and recycling and how these affect its function is currently lacking. In a combined in vitro and in silico study, we developed a mathematical model and identified these trafficking parameters. Our model predicts optimal ligand removal in an intermediate affinity range. The intracellular CTLA4 pool as well as fast internalization, recovery of free CTLA4 from internalized complexes, and recycling is critical for sustained functionality. CD80-CTLA4 interactions are predicted to dominate over CD86-CTLA4. Implications of these findings in the context of control of antigen-presenting cells by regulatory T cells and of pathologic genetic deficiencies are discussed. The presented mathematical model can be reused in the community beyond these questions to better understand other trafficking receptors and study the impact of CTLA4 targeting drugs.
Asunto(s)
Antígeno CTLA-4/metabolismo , Animales , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Células CHO , Cricetulus , Regulación de la Expresión Génica , Cinética , Ligandos , Modelos Biológicos , Unión ProteicaRESUMEN
The GTPase Ras can either promote or inhibit cell survival. Inactivating mutations in Drosophila RasGAP (encoded by vap), a Ras GTPase-activating protein, lead to age-related brain degeneration. Genetic interactions implicate the epidermal growth factor receptor (EGFR)-Ras pathway in promoting neurodegeneration but the mechanism is not known. Here, we show that the Src homology 2 (SH2) domains of RasGAP are essential for its neuroprotective function. By using affinity purification and mass spectrometry, we identify a complex containing RasGAP together with Sprint, which is a Ras effector and putative activator of the endocytic GTPase Rab5. Formation of the RasGAP-Sprint complex requires the SH2 domains of RasGAP and tyrosine phosphorylation of Sprint. RasGAP and Sprint colocalize with Rab5-positive early endosomes but not with Rab7-positive late endosomes. We demonstrate a key role for this interaction in neurodegeneration: mutation of Sprint (or Rab5) suppresses neuronal cell death caused by the loss of RasGAP. These results indicate that the long-term survival of adult neurons in Drosophila is crucially dependent on the activities of two GTPases, Ras and Rab5, regulated by the interplay of RasGAP and Sprint.
Asunto(s)
Drosophila/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Supervivencia Celular/fisiología , Drosophila/genética , Endocitosis , Femenino , Masculino , Fosforilación , Transducción de SeñalRESUMEN
CD80 and CD86 are expressed on antigen presenting cells and are required to engage their shared receptor, CD28, for the costimulation of CD4 T cells. It is unclear why two stimulatory ligands with overlapping roles have evolved. CD80 and CD86 also bind the regulatory molecule CTLA-4. We explored the role of CD80 and CD86 in the homeostasis and proliferation of CD4+FoxP3+ regulatory T cells (Treg), which constitutively express high levels of CTLA-4 yet are critically dependent upon CD28 signals. We observed that CD86 was the dominant ligand for Treg proliferation, survival, and maintenance of a regulatory phenotype, with higher expression of CTLA-4, ICOS, and OX40. We also explored whether CD80-CD28 interactions were specifically compromised by CTLA-4 and found that antibody blockade, clinical deficiency of CTLA-4 and CRISPR-Cas9 deletion of CTLA-4 all improved Treg survival following CD80 stimulation. Taken together, our data suggest that CD86 is the dominant costimulatory ligand for Treg homeostasis, despite its lower affinity for CD28, because CD80-CD28 interactions are selectively impaired by the high levels of CTLA-4. These data suggest a cell intrinsic role for CTLA-4 in regulating CD28 costimulation by direct competition for CD80, and indicate that that CD80 and CD86 have discrete roles in CD28 costimulation of CD4 T cells in the presence of high levels of CTLA-4.
Asunto(s)
Antígeno B7-2/inmunología , Antígenos CD28/inmunología , Antígeno CTLA-4/inmunología , Homeostasis/inmunología , Linfocitos T Reguladores/inmunología , Antígeno B7-2/genética , Antígenos CD28/genética , Antígeno CTLA-4/genética , Homeostasis/genética , Humanos , Linfocitos T Reguladores/citologíaRESUMEN
CD80 and CD86 are expressed on antigen presenting cells (APCs) and their role in providing costimulation to T cells is well established. However, it has been shown that these molecules can also be expressed by T cells, but the significance of this observation remains unknown. We have investigated stimuli that control CD80 and CD86 expression on T cells and show that in APC-free conditions around 40% of activated, proliferating CD4+ T cells express either CD80, CD86 or both. Expression of CD80 and CD86 was strongly dependent upon provision of CD28 costimulation as ligands were not expressed following TCR stimulation alone. Furthermore, we observed that CD80+ T cells possessed the hallmarks of induced regulatory T cells (iTreg), expressing Foxp3 and high levels of CTLA-4 whilst proliferating less extensively. In contrast, CD86 was preferentially expressed on INF-γ producing cells, which proliferated more extensively and had characteristics of effector T cells. Finally, we demonstrated that CD80 expressed on T cells inhibits CTLA-4 function and facilitates the growth of iTreg. Together these data establish endogenous expression of CD80 and CD86 by activated T cells is not due to ligand capture by transendocytosis and highlight clear differences in their expression patterns and associated functions.
Asunto(s)
Antígeno B7-1/metabolismo , Proliferación Celular , Factores de Transcripción Forkhead/metabolismo , Activación de Linfocitos , Linfocitos T Reguladores/metabolismo , Animales , Antígeno B7-1/genética , Antígeno B7-2/metabolismo , Antígenos CD28/metabolismo , Células CHO , Antígeno CTLA-4/metabolismo , Calcitriol/farmacología , Proliferación Celular/efectos de los fármacos , Cricetulus , Factores de Transcripción Forkhead/genética , Homeostasis , Humanos , Interferón gamma/metabolismo , Interleucina-2/farmacología , Activación de Linfocitos/efectos de los fármacos , Transducción de Señal , Sirolimus/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/farmacologíaRESUMEN
A sheet gelatin scaffold with attached silicone pseudoepidermal layer for wound repair purposes was produced by a cryogelation technique. The resulting scaffold possessed an interconnected macroporous structure with a pore size distribution of 131 ± 17 µm at one surface decreasing to 30 ± 8 µm at the attached silicone surface. The dynamic storage modulus (G') and mechanical stability were comparable to the clinical gold standard dermal regeneration template, Integra®. The scaffolds were seeded in vitro with human primary dermal fibroblasts. The gelatin based material was not only non-cytotoxic, but over a 28 day culture period also demonstrated advantages in cell migration, proliferation and distribution within the matrix when compared with Integra®. When seeded with human keratinocytes, the neoepidermal layer that formed over the cryogel scaffold appeared to be more advanced and mature when compared with that formed over Integra®. The in vivo application of the gelatin scaffold in a porcine wound healing model showed that the material supports wound healing by allowing host cellular infiltration, biointegration and remodelling. The results of our in vitro and in vivo studies suggest that the gelatin based scaffold produced by a cryogelation technique is a promising material for dermal substitution, wound healing and other potential biomedical applications.