Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889464

RESUMEN

The annual herb Euphorbia maculata L. produces anti-inflammatory and biologically active substances such as triterpenoids, tannins, and polyphenols, and it is used in traditional Chinese medicine. Of these bioactive compounds, terpenoids, also called isoprenoids, are major secondary metabolites in E. maculata. Full-length cDNA sequencing was carried out to characterize the transcripts of terpenoid biosynthesis reference genes and determine the copy numbers of their isoforms using PacBio SMRT sequencing technology. The Illumina short-read sequencing platform was also employed to identify differentially expressed genes (DEGs) in the secondary metabolite pathways from leaves, roots, and stems. PacBio generated 62 million polymerase reads, resulting in 81,433 high-quality reads. From these high-quality reads, we reconstructed a genome of 20,722 genes, in which 20,246 genes (97.8%) did not have paralogs. About 33% of the identified genes had two or more isoforms. DEG analysis revealed that the expression level differed among gene paralogs in the leaf, stem, and root. Whole sets of paralogs and isoforms were identified in the mevalonic acid (MVA), methylerythritol phosphate (MEP), and terpenoid biosynthesis pathways in the E. maculata L. The nucleotide information will be useful for identifying orthologous genes in other terpenoid-producing medicinal plants.


Asunto(s)
Euphorbia , ADN Complementario/genética , Euphorbia/genética , Euphorbia/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Terpenos/metabolismo , Transcriptoma/genética
2.
Genomics ; 111(4): 973-979, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30003944

RESUMEN

High-throughput RNA sequencing has revolutionized transcriptome-based studies of candidate genes, key pathways and gene regulation in non-model organisms. We analyzed full-length cDNA sequences in Zanthoxylum planispinum (Z. planispinum), a medicinal herb in major parts of East Asia. The full-length mRNA derived from tissues of leaf, early fruit and maturing fruit stage were sequenced using PacBio RSII platform to identify isoform transcriptome. We obtained 51,402 unigenes, with average 1781 bp per gene in 82.473 Mb gene lengths. Among 51,402, 3963 unigenes showed variety of isoform. By selection of one representative gene among each of the various isoforms, we finalized 46,306 unique gene set for this herb. We identified 76 cytochrome P450 (CYP450) and related isoforms that are of the wide diversity in the molecular function and biological process. These transcriptome data of Z. planispinum will provide a good resource to study metabolic engineering for the production of valuable medicinal drugs and phytochemicals.


Asunto(s)
Plantas Medicinales/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma , Zanthoxylum/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinales/metabolismo , Zanthoxylum/metabolismo
3.
Genetica ; 146(1): 1-12, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28916874

RESUMEN

Molecular marker technologies have proven to be an important breakthrough for genetic studies, construction of linkage maps and population genetics analysis. Transposable elements (TEs) constitute major fractions of repetitive sequences in plants and offer a wide range of possible areas to be explored as molecular markers. Sequence characterized amplified region (SCAR) marker development provides us with a simple and time saving alternative approach for marker development. We employed the CACTA-TD to develop SCARs and then integrated them into linkage map and used them for population structure and genetic diversity analysis of corn inbred population. A total of 108 dominant SCAR markers were designed out of which, 32 were successfully integrated in to the linkage map of maize RIL population and the remaining were added to a physical map for references to check the distribution throughout all chromosomes. Moreover, 76 polymorphic SCARs were used for diversity analysis of corn accessions being used in Korean corn breeding program. The overall average polymorphic information content (PIC) was 0.34, expected heterozygosity was 0.324 and Shannon's information index was 0.491 with a percentage of polymorphism of 98.67%. Further analysis by associating with desirable traits may also provide some accurate trait specific tagged SCAR markers. TE linked SCARs can provide an added level of polymorphism as well as improved discriminating ability and therefore can be useful in further breeding programs to develop high yielding germplasm.


Asunto(s)
Elementos Transponibles de ADN , Zea mays/genética , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Variación Genética , Filogenia , Análisis de Secuencia de ADN , Zea mays/clasificación
4.
Plants (Basel) ; 12(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050109

RESUMEN

Caulophyllum robustum, commonly named Asian blue cohosh, is a perennial herb in the family Berberidaceae. It has traditionally been used for folk medicine in China. We isolated berberine from the leaves, stem, roots, and fruits of C. robustum, and this is the first report on berberine in this species. Transcriptome analysis was conducted for the characterization of berberine biosynthesis genes in C. robustum, in which, all the genes for berberine biosynthesis were identified. From 40,094 transcripts, using gene ontology (GO) analysis, 26,750 transcripts were assigned their functions in the categories of biological process, molecular function, and cellular component. In the analysis of genes expressed in different tissues, the numbers of genes in the categories of intrinsic component of membrane and transferase activity were up-regulated in leaves versus stem. The berberine synthesis genes in C. robustum were characterized by phylogenetic analysis with corresponding genes from other berberine-producing species. The co-existence of genes from different plant families in the deepest branch subclade implies that the differentiation of berberine synthesis genes occurred early in the evolution of berberine-producing plants. Furthermore, the copy number increment of the berberine synthesis genes was detected at the species level.

5.
Front Genet ; 13: 805347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281824

RESUMEN

In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.

6.
Plants (Basel) ; 11(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36297700

RESUMEN

Berberine and berbamine are bioactive compounds of benzylisoquinoline alkaloids (BIAs) present in Berberis species. The contents of berbamine are 20 times higher than berberine in leaf tissues in three closely related species: Berberis koreana, B. thunbergii and B. amurensis. This is the first report on the quantification of berberine compared to the berbamine in the Berberis species. Comparative transcriptome analyses were carried out with mRNAs from the leaf tissues of the three-species. The comparison of the transcriptomes of B. thunbergii and B. amurensis to those of B. koreana, B. thunbergii showed a consistently higher number of differentially expressed genes than B. amurensis in KEGG and DEG analyses. All genes encoding enzymes involved in berberine synthesis were identified and their expressions were variable among the three species. There was a single copy of CYP80A/berbamunine synthase in B. koreana. Methyltransferases and cytochrome P450 mono-oxidases (CYPs) are key enzymes for BIA biosynthesis. The current report contains the copy numbers and other genomic characteristics of the methyltransferases and CYPs in Berberis species. Thus, the contents of the current research are valuable for molecular characterization for the medicinal utilization of the Berberis species.

7.
Methods Mol Biol ; 2250: 207-218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33900607

RESUMEN

Transposable elements (TEs) are mobile, recurring DNA sequences scattered throughout genome and have a large impact on genome structure and function. Several genetic marker techniques were developed to exploit their ubiquitous nature. Sequence-specific amplified polymorphism (SSAP) is a TE-based genetic marker system that has been used in various purposes such as measuring genetic relatedness between species, deciphering the population structures, molecular tagging for agronomic development in marker-assisted breeding (MAS). In addition to SSAP, sequence characterized amplified region (SCAR) from the SSAP markers provides an added advantage in identifying qualitative traits. Once developed SCAR markers are efficient, fast, and reliable method for genetic evaluations. These methods can be useful especially for the crops which have no genetic sequence information. With improved discriminatory ability they offer access to dynamic and polymorphic regions of genome. These techniques can be useful in breeding programs to improve or develop high yielding crops.


Asunto(s)
Elementos Transponibles de ADN/genética , Marcadores Genéticos/genética , Polimorfismo Genético , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Zea mays/genética , ADN de Plantas/análisis , ADN de Plantas/genética , Electroforesis en Gel de Poliacrilamida/métodos , Variación Genética , Genoma de Planta , Fitomejoramiento/métodos
8.
Plant Signal Behav ; 16(12): 1973703, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34839799

RESUMEN

Selaginella tamariscina is a lycophyta species that survives under extremely dry conditions via the mechanism of resurrection. This phenomenon involves the regulation of numerous genes that play vital roles in desiccation tolerance and subsequent rehydration. To identify resurrection-related genes, we analyzed the transcriptome between dehydration conditions and rehydration conditions of S. tamariscina. The de novo assembly generated 124,417 transcripts with an average size of 1,000 bp and 87,754 unigenes. Among these genes, 1,267 genes and 634 genes were up and down regulated by rehydration compared to dehydration. To understand gene function, we annotated Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The unigenes encoding early light-inducible protein (ELIP) were down-regulated, whereas pentatricopeptide repeat-containing protein (PPR), late embryogenesis abundant proteins (LEA), sucrose nonfermenting protein (SNF), trehalose phosphate phosphatase (TPP), trehalose phosphate synthase (TPS), and ABC transporter G family (ABCG) were significantly up-regulated in response to rehydration conditions by differentially expressed genes (DEGs) analysis. Several studies provide evidence that these genes play a role in stress environment. The ELIP and PPR genes are involved in chloroplast protection during dehydration and rehydration. LEA, SNF, and trehalose genes are known to be oxidant scavengers that protect the cell structure from the deleterious effect of drought. TPP and TPS genes were found in the starch and sucrose metabolism pathways, which are essential sugar-signaling metabolites regulating plant metabolism and other biological processes. ABC-G gene interacts with abscisic acid (ABA) phytohormone in the stomata opening during stress conditions. Our findings provide valuable information and candidate resurrection genes for future functional analysis aimed at improving the drought tolerance of crop plants.


Asunto(s)
Selaginellaceae , Ácido Abscísico/metabolismo , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selaginellaceae/genética , Selaginellaceae/metabolismo , Transcriptoma/genética
9.
Plants (Basel) ; 10(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203474

RESUMEN

Berberis koreana is a medicinal plant containing berberine, which is a bioactive compound of the benzylisoquinoline alkaloid (BIA) class. BIA is widely used in the food and drug industry for its health benefits. To investigate the berberine biosynthesis pathway, gene expression analysis was performed in leaves, flowers, and fruits at different stages of growth. This was followed by full-length cDNA sequencing analysis using the PacBio sequencer platform to determine the number of isoforms of those expressed genes. We identified 23,246 full-length unigenes, among which 8479 had more than one isoform. The number of isoforms ranged between two to thirty-one among all genes. Complete isoform analysis was carried out on the unigenes encoding BIA synthesis. Thirteen of the sixteen genes encoding enzymes for berberine synthesis were present in more than one copy. This demonstrates that gene duplication and translation into isoforms may contribute to the functional specificity of the duplicated genes and isoforms in plant alkaloid synthesis. Our study also demonstrated the streamlining of berberine biosynthesis via the absence of genes for enzymes of other BIAs, but the presence of all the genes for berberine biosynthesize in B. koreana. In addition to genes encoding enzymes for the berberine biosynthesis pathway, the genes encoding enzymes for other BIAs were not present in our dataset except for those encoding corytuberine synthase (CTS) and berbamunine synthase (BS). Therefore, this explains how B. koreana produces berberine by blocking the pathways leading to other BIAs, effectively only allowing the pathway to lead to berberine synthesis.

10.
Genomics Inform ; 19(2): e19, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34261303

RESUMEN

Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.

11.
Genes Genomics ; 42(9): 1011-1021, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32715384

RESUMEN

BACKGROUND: Euphorbia jolkini, a medicinal herb that grows on the warm beaches in Japan and South Korea, is known to be used for traditional medicines to treat a variety of ailments, including bruises, stiffness, indigestion, toothache, and diabetes. OBJECTIVE: It is to analyze the whole transcriptome and identify the genes related to the phenylpropanoid biosynthesis in the medicinally important herb E jolkini. METHODS: Paired-end Illumina HiSeq™ 2500 sequencing technology was employed for cDNA library construction and Illumina sequencing. Public databases like TAIR (The Arabidopsis Information Resource), Swissprot and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used for annotations of unigenes obtained. RESULTS: The transcriptome of E. jolkini generated 139,215 assembled transcripts with an average length of 868 bp and an N50 value of 1460 bp that were further clustered using CD-HIT into 93,801 unigenes with an average length of 847 bp (N50-1410 bp). Sixty-three percent of the coding sequences (CDS) were annotated from the longest open reading frame (ORF). A remarkable percentage of unigenes were annotated against various databases. The differentially expressed gene analysis revealed that the expression of genes related to the terpenoid backbone biosynthesis pathway was higher in the flowers, whereas that of genes related to the phenylpropanoid biosynthesis pathway was both up- and downregulated in flowers and leaves. A search of against the transcription factor domain found 1023 transcription factors (TFs) that were from 54 TF families. CONCLUSION: Assembled sequences of the E. jolkini transcriptome are made available for the first time in this study E. jolkini and lay a foundation for the investigation of secondary metabolite biosynthesis.


Asunto(s)
Euphorbia/genética , Transcriptoma/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinales/genética , Análisis de Secuencia de ADN/métodos , Factores de Transcripción/genética
12.
Genes Genomics ; 41(11): 1315-1327, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31363917

RESUMEN

BACKGROUND: Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. Dwarfism in plants prevents lodging and therefore it's a desired trait in crops. OBJECTIVE: To find differentially expressed genes to classify and understand the regulation of genes related to plant growth in mutant dwarf soybeans, which appeared in the F5 generation. METHODS: We obtained a few segregated dwarf soybeans in the populations derived from the crossing of Glycine max var. Peking and Glycine soja var. IT182936 in an F5 RIL population. These dwarf soybeans may be useful genetic resources for plant breeders, geneticists and biologists. Using the Illumina high-throughput platform, transcriptomes were generated and compared among normal and dwarf soybeans in triplicate. CONCLUSION: We found complex relationship of the expressed genes to plant growth. There were highly significantly up-/downregulated genes according to the comparison of gene expression in normal and dwarf soybeans. The genes related to disease and stress responses were found to be upregulated in dwarf soybeans. Such over-expression of disease resistance and other immune response genes can be targeted to understand how the immune genes regulate the response of plant growth. In addition, photosynthesis-related genes showed very low expression in dwarf lines. The transcriptome expression and genes classified as related to plant growth may be useful resources to researchers studying plant growth.


Asunto(s)
Resistencia a la Enfermedad , Glycine max/genética , Hibridación Genética , Estrés Fisiológico , Transcriptoma , Productos Agrícolas/genética , Productos Agrícolas/inmunología , Productos Agrícolas/fisiología , Genes de Plantas , Glycine max/inmunología , Glycine max/fisiología
13.
Genes Genomics ; 40(5): 511-519, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29892962

RESUMEN

The Betulaceae family comprises two subfamilies, Betuloideae and Corylaceae. The subfamily Betuloideae contains two genera, Alnus Mill. and Betula L. Twenty putative long terminal repeat (LTR) retrotransposons were mined from 171 scaffolds containing 5,208,995 bp of dwarf birch (Betula nana) genome sequences. Five retrotransposons were finally selected after filtering the retrotransposon canonical features and nucleotide similarities between left and right LTR sequences. Of the five retroelements, three elements were found to be Ty1/Copia retrotransposons; identity of the other two elements could not be ascertained due to sequence undetermined 'N' bases in the sequence database. Inter-retrotranposon amplified polymorphism (IRAP) analysis, based on the LTR sequences of the mined LTR-retrotransposons, produced 179 discernible IRAP bands among the Alnus and Betula genera. Sequence analysis revealed no size homoplasy among the homologous IRAP bands. Phylogenetic and principle coordinate analysis, based on the band sharing among the taxa, showed the species in two different genera were clearly separated. The subgenera in each genus of Alnus and Betula were also distinguishable from the IRAP profiles. In the genus Betula, the species in subgenus Betula showed mixed clustering between species. This is incongruent with the phylogeographical distribution of the species.


Asunto(s)
Betula/genética , Retroelementos/genética , Secuencia de Bases/genética , Mapeo Cromosómico/métodos , ADN de Plantas/genética , Marcadores Genéticos/genética , Genoma de Planta/genética , Filogenia , Polimorfismo Genético/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Secuencias Repetidas Terminales/genética
14.
Genomics Inform ; 16(4): e34, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30602095

RESUMEN

Cirsium japonicum belongs to the Asteraceae or Compositae family and is a medicinal plant in Asia that has a variety of effects, including tumour inhibition, improved immunity with flavones, and antidiabetic and hepatoprotective effects. Silymarin is synthesized by 4-coumaroyl-CoA via both the flavonoid and phenylpropanoid pathways to produce the immediate precursors taxifolin and coniferyl alcohol. Then, the oxidative radicalization of taxifolin and coniferyl alcohol produces silymarin. We identified the expression of genes related to the synthesis of silymarin in C. japonicum in three different tissues, namely, flowers, leaves and roots, through RNA sequencing. We obtained 51,133 unigenes from transcriptome sequencing by de novo assembly using Trinity v2.1.1, TransDecoder v2.0.1, and CD-HIT v4.6 software. The differentially expressed gene analysis revealed that the expression of genes related to the flavonoid pathway was higher in the flowers, whereas the phenylpropanoid pathway was more highly expressed in the roots. In this study, we established a global transcriptome dataset for C. japonicum. The data shall not only be useful to focus more deeply on the genes related to product medicinal metabolite including flavolignan but also to study the functional genomics for genetic engineering of C. japonicum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA